【題目】隨著人們對(duì)環(huán)境關(guān)注度的提高,綠色低碳出行越來(lái)越受到市民重視. 為此貴陽(yáng)市建立了公共自行車(chē)服務(wù)系統(tǒng),市民憑本人二代身份證到自行車(chē)服務(wù)中心辦理誠(chéng)信借車(chē)卡借車(chē),初次辦卡時(shí)卡內(nèi)預(yù)先贈(zèng)送20積分,當(dāng)積分為0時(shí),借車(chē)卡將自動(dòng)鎖定,限制借車(chē),用戶應(yīng)持卡到公共自行車(chē)服務(wù)中心以1元購(gòu)1個(gè)積分的形式再次激活該卡,為了鼓勵(lì)市民租用公共自行車(chē)出行,同時(shí)督促市民盡快還車(chē),方便更多的市民使用,公共自行車(chē)按每車(chē)每次的租用時(shí)間進(jìn)行扣分收費(fèi),具體扣分標(biāo)準(zhǔn)如下:
①租用時(shí)間不超過(guò)1小時(shí),免費(fèi);
②租用時(shí)間為1小時(shí)以上且不超過(guò)2小時(shí),扣1分;
③租用時(shí)間為2小時(shí)以上且不超過(guò)3小時(shí),扣2分;
④租用時(shí)間超過(guò)3小時(shí),按每小時(shí)扣2分收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算).
甲、乙兩人獨(dú)立出行,各租用公共自行車(chē)一次,兩人租車(chē)時(shí)間都不會(huì)超過(guò)3小時(shí),設(shè)甲、乙租用時(shí)間不超過(guò)1小時(shí)的概率分別是0.4和0.5;租用時(shí)間為1小時(shí)以上且不超過(guò)2小時(shí)的概率分別是0.4和0.3.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設(shè)甲、乙兩人所扣積分之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
【答案】(1)甲、乙兩人所扣積分相同的概率為0.36,(2)的數(shù)學(xué)期望.
【解析】試題分析:(1)先確定甲、乙兩人所扣積分相同事件取法:扣0分、扣1分及扣2分,再根據(jù)相互獨(dú)立事件概率乘法公式及互斥事件概率加法公式得所求概率,(2)先確定隨機(jī)變量取法,再分別求對(duì)應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.
試題解析:(Ⅰ)分別記“甲扣0,1,2分”為事件,它們彼此互斥,
且.
分別記“乙扣0,1,2分”為事件,它們彼此互斥,
且.
由題知, 與相互獨(dú)立,
記甲、乙兩人所扣積分相同為事件,則,
所以
=.
(Ⅱ)的可能取值為: ,
,
,
,
,
所以的分布列為:
| 0 | 1 | 2 | 3 | 4 |
P | 0.2 | 0.32 | 0.3 | 0.14 | 0.04 |
的數(shù)學(xué)期望.
答:甲、乙兩人所扣積分相同的概率為0.36, 的數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,設(shè)函數(shù).
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)討論在區(qū)間上的單調(diào)性;
(3)對(duì)任意恒成立時(shí), 的最大值為1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最低點(diǎn)為 .
(1)求f(x)的解析式;
(2)當(dāng) ,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC= , SB= .
(1)證明:SC⊥BC;
(2)求三棱錐的體積VS﹣ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為的正方體上,分別用過(guò)共頂點(diǎn)的三條棱中點(diǎn)的平面截該正方形,則截去個(gè)三棱錐后,剩下的幾何體的體積是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),為了解這項(xiàng)政策的落實(shí)情況,有關(guān)部門(mén)就“你某天在校體育活動(dòng)時(shí)間是多少”的問(wèn)題,在某校隨機(jī)抽查了部分學(xué)生,再根據(jù)活動(dòng)時(shí)間t(小時(shí))進(jìn)行分組(A組:t<0.5,B組:0.5≤t≤1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問(wèn)題:
(1)此次抽查的學(xué)生數(shù)為人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)從抽查的學(xué)生中隨機(jī)詢問(wèn)一名學(xué)生,該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是
(4)若當(dāng)天在校學(xué)生數(shù)為1200人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對(duì)稱軸l上是否存在點(diǎn)P,使△PBN是等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),設(shè)直線與曲線交于, 兩點(diǎn).
(Ⅰ)求線段的長(zhǎng);
(Ⅱ)已知點(diǎn)在曲線上運(yùn)動(dòng),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo)及的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)A(﹣6,0)的直線l1與直線l2:y=2x相交于點(diǎn)B(m,4).
(1)求直線l1的表達(dá)式;
(2)過(guò)動(dòng)點(diǎn)P(n,0)且垂于x軸的直線與l1 , l2的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),寫(xiě)出n的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com