【題目】三棱錐S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC= , SB= .
(1)證明:SC⊥BC;
(2)求三棱錐的體積VS﹣ABC
【答案】解:(1)∵SA⊥AB SA⊥AC AB∩AC=A
∴SA⊥平面ABC,∴AC為SC在平面ABC內(nèi)的射影,
又∵BC⊥AC,由三垂線定理得:SC⊥BC
(2)在△ABC中,AC⊥BC,AC=2,BC=,∴AB= =,
∵SA⊥AB,∴△SAB為Rt△,SB=,∴SA==2,
∵SA⊥平面ABC,∴SA為棱錐的高,
∴VS﹣ABC=××AC×BC×SA=×2××2= .
【解析】(1)因為SA⊥面ABC,AC為SC在面ABC內(nèi)的射影,由三垂線定理可直接得證.
(2)由題意可直接找出側(cè)面SBC與底面ABC所成二面角的平面角是∠SCA,在直角三角形中求解即可.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)
已知橢圓的短軸長為,且與拋物線有共同的焦點,橢圓的左頂點為A,右頂點為,點是橢圓上位于軸上方的動點,直線,與直線分別交于兩點.
(I)求橢圓的方程;
(Ⅱ)求線段的長度的最小值;
(Ⅲ)在線段的長度取得最小值時,橢圓上是否存在一點,使得的面積為,若存在求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 、分別為和的中點.
()證明: 平面.
()證明:平面平面.
()當上的動點滿足什么條件時,使三棱錐的體積與四棱錐體積的比值為,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】ABCD為正方形,P為平面ABCD外一點,且PA⊥平面ABCD,則平面PAB與平面PBC,平面PAB與平面PAD的位置關(guān)系是( )
A.平面PAB與平面PAD,PBC垂直
B.它們都分別相交且互相垂直
C.平面PAB與平面PAD垂直,與平面PBC相交但不垂直
D.平面PAB與平面PBC垂直,與平面PAD相交但不垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中, ,點E,H分別是所在邊靠近B,D的三等分點,現(xiàn)沿著EH將矩形折成直二面角,分別連接AD,AC,CB,形成如圖所示的多面體.
(1)證明:平面BCE∥平面ADH;
(2)證明:EH⊥AC;
(3)求二面角B-AC-D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐的三個側(cè)面均為邊長是的等邊三角形, , 分別為, 的中點.
(I)求的長.
(II)求證: .
(III)求三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著人們對環(huán)境關(guān)注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽市建立了公共自行車服務(wù)系統(tǒng),市民憑本人二代身份證到自行車服務(wù)中心辦理誠信借車卡借車,初次辦卡時卡內(nèi)預(yù)先贈送20積分,當積分為0時,借車卡將自動鎖定,限制借車,用戶應(yīng)持卡到公共自行車服務(wù)中心以1元購1個積分的形式再次激活該卡,為了鼓勵市民租用公共自行車出行,同時督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時間進行扣分收費,具體扣分標準如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,扣1分;
③租用時間為2小時以上且不超過3小時,扣2分;
④租用時間超過3小時,按每小時扣2分收費(不足1小時的部分按1小時計算).
甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.4和0.3.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設(shè)甲、乙兩人所扣積分之和為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中央電視臺為了解該衛(wèi)視《朗讀者》節(jié)目的收視情況,抽查東西兩部各個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示其中一個數(shù)字被污損,
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對朗讀以及經(jīng)典的閱讀學習積累的熱情,從中獲益匪淺,現(xiàn)從觀看節(jié)目的觀眾中隨機統(tǒng)計了位觀眾的周均閱讀學習經(jīng)典知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示):
年齡歲 | ||||
周均學習成語知識時間(小時) |
由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為歲觀眾周均學習閱讀經(jīng)典知識的時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】畢節(jié)市正實施“五城同創(chuàng)”計劃。為搞好衛(wèi)生維護工作,政府招聘了200名市民志愿者,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如下:
分組(歲) | 頻數(shù) | 頻率 |
[30,35) | 20 | 0.1 |
[35,40) | 20 | 0.1 |
[40,45) | ① | 0.2 |
[45,50) | ② | ③ |
[50,55] | 40 | 0.2 |
合計 | 200 | 1 |
(1)頻率分布表中的①②③位置應(yīng)填什么數(shù)?補全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計這200名志愿者的平均年齡.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com