4.函數(shù)y=log2(6+x)在區(qū)間[2,+∞)上的最小值是3.

分析 直接利用對(duì)數(shù)函數(shù)的單調(diào)性,求解函數(shù)的最小值即可.

解答 解:函數(shù)y=log2(6+x)在區(qū)間[2,+∞)上是增函數(shù),所以,函數(shù)的最小值為:y=log2(6+2)=3.
故答案為:3.

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,函數(shù)最值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知M點(diǎn)是△ABC的重心,若以AB為直徑的圓恰好經(jīng)過點(diǎn)M,則$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=mx-$\frac{m}{x}$,g(x)=3lnx.
(1)當(dāng)m=4時(shí),求曲線f(x)=mx-$\frac{m}{x}$在點(diǎn)(2,f(2))處的切線方程;
(2)若x∈(1,$\sqrt{e}$](e是自然對(duì)數(shù)的底數(shù))時(shí),不等式f(x)-g(x)<3恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{a}$=t$\overrightarrow{{e}_{1}}$+(k2-1)$\overrightarrow{{e}_{2}}$,$\overrightarrow$=(2t+1)$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow$,試求t關(guān)于k的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.己知函數(shù)f(x)=tanx-x(0<x<$\frac{π}{2}$).
(1)試判斷函數(shù)f(x)的單調(diào)性,并說明理由;
(2)若數(shù)列{an}滿足0<a1<$\frac{π}{4}$,an+1=f(an),n∈N*,證明:0<an+1<an<$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.將下列各式化為Asin(α+φ)或Acos(α+φ)的形式:
(1)5sinα-12cosα;
(2)$\frac{\sqrt{2}}{2}$cosα-$\frac{\sqrt{6}}{2}$sinα;
(3)-$\frac{\sqrt{3}}{3}$sinα-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)銳角△ABC的外接圓圓心為O,半徑為25,弦AB=48,AC=40,則cos∠BAC的值為$\frac{3}{5}$,$\overrightarrow{OA}$$•\overrightarrow{OB}$+$\overrightarrow{OB}$$•\overrightarrow{OC}$+$\overrightarrow{OC}$$•\overrightarrow{OA}$=-877.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列四個(gè)函數(shù)中:①y=-$\sqrt{x}$;②y=log2(x+1);③y=-$\frac{1}{x+1}$;④y=${(\frac{1}{2})^{x-1}}$.在(0,+∞)上為減函數(shù)的是①④.(填上所有正確選項(xiàng)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x|-|2x-1|,記f(x)>-1的解集為M.
(Ⅰ)求M;
(Ⅱ)已知a∈M,比較a2-a+1與$\frac{1}{a}$的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案