古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù)。如三角形數(shù)1,3,6,10···,第n個三角形數(shù)為。記第n個k邊形數(shù)為N(n,k)(),以下列出了部分k邊形數(shù)中第n個數(shù)的表達式:
三角形數(shù)   N(n,3)=   
正方形數(shù)   N(n,4)=
五邊形數(shù)   N(n,5)= 
六邊形數(shù)   N(n,6)=
可以推測N(n,k)的表達式,由此計算N(10,24)= ____________

解析試題分析:原已知式子可化為:,
,,,由此歸納推理可得
.
故答案為:.
考點:歸納推理的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題“”,其反設(shè)正確的是(    )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

觀察式子: , , ,……則可歸納出式子()(   )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

把命題“若是正實數(shù),則有”推廣到一般情形,推廣后的命題為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

觀察分析下表中的數(shù)據(jù):

多面體
面數(shù)(
頂點數(shù)()
棱數(shù)()
三棱錐
5
6
9
五棱錐
6
6
10
立方體
6
8
12
 
猜想一般凸多面體中,所滿足的等式是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

,則對于,          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)等差數(shù)列的前項和為,則,,,
成等差數(shù)列.類比以上結(jié)論有:設(shè)等比數(shù)列的前項積為,則成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè),,由計算得,,,,觀察上述結(jié)果,可推出一般的結(jié)論為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列推理中屬于歸納推理且結(jié)論正確的是(  )

A.設(shè)數(shù)列{an}的前n項和為Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:Snn2
B.由f(x)=xcos x滿足f(-x)=-f(x)對?x∈R都成立,推斷:f(x)=xcos x為奇函數(shù)
C.由圓x2y2r2的面積S=πr2,推斷:橢圓=1(ab>0)的面積S=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對一切n∈N*,(n+1)2>2n

查看答案和解析>>

同步練習(xí)冊答案