(10分)
如圖,要計算西湖岸邊兩景點的距離,由于地形的限制,需要在岸上選取兩點,現(xiàn)測得, ,,求兩景點的距離(精確到0.1km).參考數(shù)據(jù):  


.解:在△ABD中,設(shè)BD=x,
,
 ,  
整理得:     ,                      
解之: ,(舍去),
由正弦定理,得:
     ,      
≈11.3 (km)。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)敘述并證明余弦定理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角的對邊分別為,且
(1)求角的大;
(2)若,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是等邊三角形,,,三點共線,

(Ⅰ)求的值;
(Ⅱ)求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正在海上A處執(zhí)行任務(wù)的漁政船甲和在B處執(zhí)行任務(wù)的漁政船乙,同時收到同一片海域上一艘漁船丙的求救信號,此時漁船丙在漁政船甲的南偏東40°方向距漁政船甲70km的C處,漁政船乙在漁政船甲的南偏西20°方向的B處,兩艘漁政船協(xié)調(diào)后立即讓漁政船甲向漁船丙所在的位置C處沿直線AC航行前去救援,漁政船乙仍留在B處執(zhí)行任務(wù),漁政船甲航行30km到達D處時,收到新的指令另有重要任務(wù)必須執(zhí)行,于是立即通知在B處執(zhí)行任務(wù)的漁政船乙前去救援漁船丙(漁政船乙沿直線BC航行前去救援漁船丙),此時B、D兩處相距42km,問漁政船乙要航行多少距離才能到達漁船丙所在的位置C處實施營救.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

三、解答題(本大題有5道小題,各小題12分,共60分)
17.在中,分別是角的對邊,向量,,且 .
(1)求角的大;
(2)設(shè),且的最小正周期為,求
區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
中,角的對邊分別為,且滿足
(Ⅰ)若求此三角形的面積;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


查看答案和解析>>

同步練習(xí)冊答案