15.等差數(shù)列{an}前n項(xiàng)和為Sn,S7+S5=10,a3=5,則S7=( 。
A.25B.49C.-15D.40

分析 利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式列出方程組,求出首項(xiàng)和公差,由此能求出S7

解答 解:∵等差數(shù)列{an}前n項(xiàng)和為Sn,S7+S5=10,a3=5,
∴$\left\{\begin{array}{l}{7{a}_{1}+\frac{7×6}{2}d+5{a}_{1}+\frac{5×4}{2}d=10}\\{{a}_{1}+2d=5}\end{array}\right.$,
解得${a}_{1}=\frac{135}{7}$,d=-$\frac{50}{7}$,
∴S7=$7{a}_{1}+\frac{7×6}{2}d$=$7×\frac{135}{7}+\frac{7×6}{2}×(-\frac{50}{7})$=-15.
故選:C.

點(diǎn)評 本題考查等差數(shù)列的性質(zhì),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的A點(diǎn)處,乙船在中間B點(diǎn)處,丙船在最后面的C點(diǎn)處,且BC:AB=3:1.一架無人機(jī)在空中的P點(diǎn)處對它們進(jìn)行數(shù)據(jù)測量,在同一時刻測得∠APB=30°,∠BPC=90°.(船只與無人機(jī)的大小及其它因素忽略不計(jì))
(1)求此時無人機(jī)到甲、丙兩船的距離之比;
(2)若此時甲、乙兩船相距100米,求無人機(jī)到丙船的距離.(精確到1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=a{x^{\frac{3}{2}}}-lnx-\frac{2}{3}$的圖象的一條切線為x軸.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)令g(x)=|f(x)+f'(x)|,若不相等的兩個實(shí)數(shù)x1,x2滿足g(x1)=g(x2),求證:x1x2<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的頂點(diǎn)A(1,0),點(diǎn)B在x軸上移動,|AB|=|AC|,且BC的中點(diǎn)在y軸上.
(Ⅰ)求C點(diǎn)的軌跡Γ的方程;
(Ⅱ)已知軌跡Γ上的不同兩點(diǎn)M,N與P(1,2)的連線的斜率之和為2,求證:直線MN過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直線ax-2by=2(a>0,b>0)過圓x2+y2-4x+2y+1=0的圓心,則$\frac{1}{a}+\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知長方體ABCD-A1B1C1D1中,$A{A_1}=AB=\sqrt{3}$,AD=1,則異面直線B1C和C1D所成角的余弦值為( 。
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{2}}}{6}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若數(shù)列{an}的前n項(xiàng)和為${S_n}=\frac{2}{3}{n^2}-\frac{1}{3}n$,則數(shù)列an=$\frac{4}{3}$n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;
(2)用ξ表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以拋物線Γ的頂點(diǎn)為圓心,$\sqrt{2}$為半徑的圓交Γ于A、B兩點(diǎn),且AB=2
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求Γ的方程;
(2)若過點(diǎn)A且與Γ只有一個公共點(diǎn)的直線交Γ的對稱軸于點(diǎn)C,點(diǎn)D在線段AB上,直線CD與Γ交于P、Q兩點(diǎn),求證:PC•QD=PD•QC.

查看答案和解析>>

同步練習(xí)冊答案