已知復(fù)數(shù)z1=a+bi,z2=1+ai(a,b∈R),若|z1|<z2,則b的取值范圍是
(-1,1)
(-1,1)
分析:由題意可得 a2+b2<1+a2,化簡(jiǎn)可得 b2<1,由此解得b的范圍.
解答:解:由題意可得 a2+b2<1+a2,化簡(jiǎn)可得 b2<1,解得-1<b<1,
故b的取值范圍是 (-1,1),
故答案為 (-1,1).
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的代數(shù)表示及其幾何意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=a+bi,z2=c+di,(a,b,c,d∈R),下列命題中:
①z1,z2不能比較大;
②若|z1|≤1,則-1≤z1≤1;
z1=z2?
a=c
b=d
;
④若|z1|+|z2|=0,則z1=z2=0.
其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=a+bi,z2=c+di(a,b,c,d∈R).
(1)在復(fù)平面中,若OZ1⊥OZ2(O為坐標(biāo)原點(diǎn),復(fù)數(shù)z1,z2分別對(duì)應(yīng)點(diǎn)Z1,Z2),求a,b,c,d滿(mǎn)足的關(guān)系式;
(2)若|z1|=|z2|=1,|z1-z2|=
3
,求|z1+z2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=a+bi(a,b∈R),z2=-1+ai,若||z1|<|z2|,則實(shí)數(shù)b的取值范圍是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知復(fù)數(shù)z1=a+bi,z2=c+di,(a,b,c,d∈R),下列命題中:
①z1,z2不能比較大。
②若|z1|≤1,則-1≤z1≤1;
z1=z2?
a=c
b=d

④若|z1|+|z2|=0,則z1=z2=0.
其中正確的命題是( 。
A.②③B.①③C.③④D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案