【題目】甲、乙兩臺機床同時加工直徑為10cm的零件,為了檢驗零件的質量,從零件中各隨機抽取6件測量,測得數(shù)據如下(單位:mm):

甲:99,10098,100,100103;

乙:99,100,102,99,100,100.

1)分別計算上述兩組數(shù)據的平均數(shù)和方差

2)根據(1)的計算結果,說明哪一臺機床加工的零件更符合要求.

【答案】1)見解析;(2)乙機床加工的零件更符合要求.

【解析】

(1)直接由平均數(shù)和方差的計算公式代入數(shù)據進行計算即可.
(2)由平均數(shù)和方差各自說明數(shù)據的特征,做出判斷.

1,

,

.

2)因為,,

說明甲、乙機床加工的零件的直徑長度的平均值相同.

且甲機床加工的零件的直徑長度波動比較大,
因此乙機床加工的零件更符合要求.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C1的漸近線是x±2y=0,焦點坐標是F1-,0)、F2,0).

1)求雙曲線C1的方程;

2)若橢圓C2與雙曲線C1有公共的焦點,且它們的離心率之和為,點P在橢圓C2上,且|PF1|=4,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量(sin x,cos x),(cos x,cos x)(2,1)

(1)若,求sin xcos x的值;

(2)若0<x≤,求函數(shù)f(x)=·的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)),.

(1)若曲線在它們的交點處有相同的切線,求實數(shù),的值;

(2)當時,若函數(shù)在區(qū)間內恰有兩個零點,求實數(shù)a的取值范圍;

(3)當時,求函數(shù)在區(qū)間上的最小值.

[選修4-4:坐標系與參數(shù)方程]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三個內角所對的邊分別是,若.

1)求角;

2)若的外接圓半徑為2,求周長的最大值.

【答案】(1) ;(2) .

【解析】試題分析:(1由正弦定理將邊角關系化為邊的關系,再根據余弦定理求角,(2先根據正弦定理求邊,用角表示周長,根據兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據正弦函數(shù)性質求最大值.

試題解析:1)由正弦定理得,

,∴,即

因為,則.

(2)由正弦定理

, ,

∴周長

,

∴當

∴當, 周長的最大值為.

型】解答
束】
18

【題目】經調查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經國際衛(wèi)生組織對大量不同年齡的人群進行血壓調查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

其中: ,

(1)請畫出上表數(shù)據的散點圖;

(2)請根據上表提供的數(shù)據,用最小二乘法求出關于的線性回歸方程;(的值精確到0.01)

(3)若規(guī)定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有多少種不同的方法將集合中的元素歸入三個有序集合,使得每個元素至少含于其中一個集合之中,這三個集合的交是空集,而其中任兩個集合的交都不是空集?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知定義在上的函數(shù)的單增區(qū)間為,且圖象過點.

1)求函數(shù)的解析式;

2)對任意的,存在常數(shù)使得成立,求整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中為了選拔學生參加“全國高中數(shù)學聯(lián)賽”,先在本校進行初賽(滿分150分),隨機抽取100名學生的成績作為樣本,并根據他們的初賽成績得到如圖所示的頻率分布直方圖.

1)求頻率分布直方圖中a的值;

2)根據頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)的單調性;

2)當時,,求函數(shù)上的最小值;

3)當時,有兩個零點,,且,求證:.

查看答案和解析>>

同步練習冊答案