【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列敘述正確的是( )
A.若α∥β,m∥α,n∥β,則m∥n
B.若α⊥β,m⊥α,n∥β,則m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,則α∥β
D.若m⊥α,nβ,m⊥n,則α⊥β

【答案】C
【解析】解:在長方體ABCD﹣A′B′C′D′中,
(1)令平面ABCD為平面α,平面A′B′C′D′為平面β,A′B′為直線m,BC為直線n,
顯然α∥β,m∥α,n∥β,但m與n不平行,故A錯(cuò)誤.
(2)令平面ABCD為平面α,平面ABB′A′為平面β,直線BB′為直線m,直線CC′為直線n,
顯然α⊥β,m⊥α,n∥β,m∥n.故B錯(cuò)誤.
(3)令平面ABCD為平面α,平面A′B′C′D′為平面β,直線BB′為直線m,直線B′C′為直線n,
顯然m⊥α,nβ,m⊥n,但α∥β,故D錯(cuò)誤.
故選C.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象的相鄰兩條對稱軸間的距離是 .若將函數(shù)f(x)的圖象向右平移 個(gè)單位,再把圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小為原來的一半,得到g(x),則g(x)的解析式為(
A.g(x)=sin(4x+
B.g(x)=sin(8x﹣ )??
C.g(x)=sin(x+
D.g(x)=sin4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求不等式的解集;

(2)如果恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)設(shè)關(guān)于的方程個(gè)不同的實(shí)數(shù)解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 平面,底面為矩形, ,該四棱錐的外接球的體積為,則到平面的距離為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【河南省部分重點(diǎn)中學(xué)2017屆高三上學(xué)期第一次聯(lián)考】在平面直角坐標(biāo)系,已知圓.

直線點(diǎn),且被圓得的弦,求直線方程;

設(shè)平面直角坐標(biāo)系上的點(diǎn),滿足:存在過點(diǎn)無窮多對相互垂直的直線,它們分別與

交,且直線得的弦長與直線得的弦長相等,試求所有滿足條件的點(diǎn)

坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);

(2)若為自然數(shù),則當(dāng)取哪些值時(shí),方程上有三個(gè)不相等的實(shí)數(shù)根,并求出相應(yīng)的實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,若函數(shù)滿足:對于給定的 ,存在,使得成立,那么稱具有性質(zhì).

1)函數(shù) 是否具有性質(zhì)?說明理由;

2)已知函數(shù)具有性質(zhì),求的最大值;

3)已知函數(shù)的定義域?yàn)?/span>,滿足,且的圖像是一條連續(xù)不斷的曲線,問:是否存在正整數(shù)n,使得函數(shù)具有性質(zhì),若存在,求出這樣的n的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知含有個(gè)元素的正整數(shù)集, )具有性質(zhì):對任意不大于(其中)的正整數(shù),存在數(shù)集的一個(gè)子集,使得該子集所有元素的和等于

(Ⅰ)寫出, 的值;

(Ⅱ)證明:“ ,…, 成等差數(shù)列”的充要條件是“”;

(Ⅲ)若,求當(dāng)取最小值時(shí)的最大值.

查看答案和解析>>

同步練習(xí)冊答案