【題目】已知函數(shù)f(x)=ax2﹣|x|+2a﹣1(a為實常數(shù)).
(1)若a=1,求f(x)=3的解;
(2)求f(x)在區(qū)間[1,2]的最小值為g(a).
【答案】(1)或2;(2)
【解析】
(1)由a=1,得到關(guān)于|x|的二次方程,解之即可;
(2)用二次函數(shù)法求函數(shù)的最小值,要注意定義域,同時由于a不具體,要根據(jù)對稱軸分類討論.
(1)a=1,x2﹣|x|+1=3,即x2﹣|x|-2=0,
解得|x|=2或-1(舍去)
∴x=-2或2
(2)當(dāng)a>0,x∈[1,2]時,
①若,即,則f(x)在[1,2]為增函數(shù)g(a)=f(1)=3a﹣2
②若,即,
③若,即時,f(x)在[1,2]上是減函數(shù):
g(a)=f(2)=6a﹣3.
當(dāng)a=0, x∈[1,2]時,,f(x)在[1,2]上是減函數(shù),
g(a)=f(2)=﹣3
當(dāng)a<0, x∈[1,2]時,
,f(x)在[1,2]上是減函數(shù),
g(a)=f(2)=6a﹣3
綜上可得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調(diào)函數(shù);②函數(shù),的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.
(1)求函數(shù)的所有“保值”區(qū)間.
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
已知和具有線性相關(guān)關(guān)系
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少噸時,年利潤取到最大值?(保留一位小數(shù))
參考數(shù)據(jù)及公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海安市江淮文化園是以江淮歷史文化為底蘊的人文景觀,整個園區(qū)由白龍故里、先賢景區(qū)、鳳山書院、中國名人藝術(shù)館群四大景區(qū)組成.據(jù)估計,其中鳳山書院景區(qū)每天的水電、人工等固定成本為1000元,另每增加一名游客需另外增加成本10元,鳳山書院景區(qū)門票單價x(元)(x∈N*)與日門票銷售量(張)的關(guān)系如下表,并保證鳳山書院景區(qū)每天盈利.
x | 20 | 35 | 40 | 50 |
y | 400 | 250 | 200 | 100 |
(1)在坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實數(shù)對的對應(yīng)點,并確定y與x的函數(shù)關(guān)系式;
(2)求出的值,并解釋其實際意義;
(3)請寫出鳳山書院景區(qū)的日利潤的表達(dá)式,并回答該景區(qū)怎樣定價才能獲最大日利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)內(nèi)建有一塊矩形草坪ABCD,AB=50米,,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)三條小路OE,EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且,如圖所示.
(Ⅰ)設(shè),試將的周長l表示成的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(Ⅱ)經(jīng)核算,三條路每米鋪設(shè)費用均為400元,試問如何設(shè)計才能使鋪路的總費用最低?并求出最低總費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={ ( x ,y ) | y=f(x) },若對于任意( x1 ,y1 )∈M,都存在( x2 ,y2 )∈M,使得x1 x2 +y1 y2 =0成立,則稱集合M是“理想集合”,則下列集合是理想集合的是( )
A. M={ ( x ,y ) | y= } B. M={ ( x ,y ) | y=log2 (x-1) }
C. M={ ( x ,y ) | y=x2-2x+2 } D. M={ ( x ,y ) | y=cosx }
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項和為, , ,對每個正整數(shù),在與之間插入個3,得到一個新的數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com