【題目】已知橢圓的焦距為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設分別是橢圓的下頂點和上頂點, 是橢圓上異于的任意一點,過點軸于為線段的中點,直線與直線交于點為線段的中點, 為坐標原點,求證:

【答案】(Ⅰ).

(Ⅱ)證明見解析.

【解析】試題分析】(I)依題意可知,將點代入橢圓方程,結合,解出的值,即求得橢圓的方程.(II) ,則 .將的坐標代入橢圓方程,求得的關系式.利用點斜式寫出直線的方程,由此求得點的坐標,利用中點坐標求得點的坐標.代入,由此證得.

試題解析】

(Ⅰ)由題設知焦距為,所以.

又因為橢圓過點,所以代入橢圓方程得

因為,解得,

故所求橢圓的方程是

(Ⅱ)設 ,則

因為點在橢圓上,所以.即

,所以直線的方程為

,得,所以

, 為線段的中點,所以

所以,

,

所以,即

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(題文)已知橢圓的離心率為,過點的直線交橢圓兩點,,且當直線垂直于軸時,.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,求弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=fx)是定義在(-,+∞)上的奇函數(shù),且在[0+∞)上為增函數(shù),

1)求證:函數(shù)在(-,0)上也是增函數(shù);

2)如果f=1,解不等式-1f2x+1≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,, .

(I)求證:;

(II)在棱 上取一點 M, ,與平面所成角的正弦值為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海洋藍洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑,兩點間的距離,現(xiàn)在珊瑚群島上取兩點,,測得,,,,則,兩點的距離為___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,圓的方程為,直線的極坐標方程為.

(I )寫出的極坐標方程和的平面直角坐標方程;

(Ⅱ) 若直線的極坐標方程為,設的交點為的交點為的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在黨中央的正確指導下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護人員的奮力救治,二月份新冠肺炎疫情得到了控制.下圖是國家衛(wèi)健委給出的全國疫情通報,甲、乙兩個省份從27日到213日一周的新增新冠肺炎確診人數(shù)的折線圖如下:

根據(jù)圖中甲、乙兩省的數(shù)字特征進行比對,通過比較把你得到最重要的兩個結論寫在答案紙指定的空白處.

_________________________________________________.

_________________________________________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=2,n(an+1﹣an)=an+1,n∈N*

(1)設bn ,求數(shù)列{bn}的通項公式;

(2)若對于任意的t∈[0,1],n∈N*,不等式2t2﹣(a+1)t+a2﹣a+3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如下圖表:

1)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?

2)估算該市80歲及以上長者占全市戶籍人口的百分比;

3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標準如下:

①80歲及以上長者每人每月發(fā)放生活補貼200元;

②80歲以下老人每人每月發(fā)放生活補貼120元;

③不能自理的老人每人每月額外發(fā)放生活補貼100元.

利用樣本估計總體,試估計政府執(zhí)行此計劃的年度預算.(單位:億元,結果保留兩位小數(shù))

查看答案和解析>>

同步練習冊答案