【題目】已知圓C過定點,且與直線相切,圓心C的軌跡為E,曲線E與直線l:()相交于A,B兩點.
(1)求曲線E的方程;
(2)當的面積等于時,求k的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形的邊長為,將沿對角線折起,使平面平面,得到如圖所示的三棱錐,若為邊的中點,分別為上的動點(不包括端點),且,設,則三棱錐的體積取得最大值時,三棱錐的內切球的半徑為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為0的等差數(shù)列{an},其前n項和為Sn,若S10=100,a1,a2,a5成等比數(shù)列.
(1)求{an}的通項公式;
(2)bn=anan+1+an+an+1+1,求數(shù)列的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線過點(3,-2)且與橢圓4x2+9y2=36有相同的焦點.
(1)求雙曲線的標準方程;
(2)若點M在雙曲線上,F(xiàn)1,F(xiàn)2為左、右焦點,且|MF1|+|MF2|=6,試判別△MF1F2的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知五邊形ABECD由一個直角梯形ABCD與一個等邊三角形BCE構成,如圖1所示,AB丄BC,AB//CD,且AB=2CD。將梯形ABCD沿著BC折起,如圖2所示,且AB丄平面BEC。
(1)求證:平面ABE丄平面ADE;
(2)若AB=BC,求二面角A-DE-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,底面為正方形的四棱錐P-ABCD中,AB=2,PA=4,PB=PD=,AC與BD相交于點O,E為PD中點.
(1)求證:EO//平面PBC;
(2)設線段BC上點F滿足CF=2BF,求銳二面角E-OF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com