【題目】已知圓C過定點,且與直線相切,圓心C的軌跡為E,曲線E與直線l()相交于A,B兩點.

1)求曲線E的方程;

2)當的面積等于時,求k的值.

【答案】(1);(2

【解析】

1)點C到定點和直線的距離相等,可知點C的軌跡是拋物線,求出方程即可;

2)設直線lx軸交于點N,可得,,,可得,然后將直線與拋物線方程聯(lián)立并消去,結合根與系數(shù)關系,可求得,進而可得到的面積表達式,令其等于,可求出k的值.

1)由題意,點C到定點和直線的距離相等,故點C的軌跡是拋物線,為焦點,為準線,E的方程為

2)將直線方程與拋物線方程聯(lián)立,消去x,整理得.設,,

由根與系數(shù)關系,.

設直線lx軸交于點N,則

所以.

因為,所以.

,

解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的邊長為,將沿對角線折起,使平面平面,得到如圖所示的三棱錐,若邊的中點,分別為上的動點(不包括端點),且,設,則三棱錐的體積取得最大值時,三棱錐的內切球的半徑為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an},其前n項和為Sn,若S10100a1,a2,a5成等比數(shù)列.

1)求{an}的通項公式;

2bnanan+1+an+an+1+1,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線過點(3,-2)且與橢圓4x2+9y2=36有相同的焦點.

(1)求雙曲線的標準方程;

(2)若點M在雙曲線上,F(xiàn)1,F(xiàn)2為左、右焦點,且|MF1|+|MF2|=6,試判別△MF1F2的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓過點,離心率為,左右焦點分別為,過點的直線交橢圓于兩點。

(1)求橢圓的方程;

(2)當的面積為時,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知五邊形ABECD由一個直角梯形ABCD與一個等邊三角形BCE構成,如圖1所示,AB丄BC,AB//CD,且AB=2CD。將梯形ABCD沿著BC折起,如圖2所示,且AB丄平面BEC。

(1)求證:平面ABE丄平面ADE;

(2)若AB=BC,求二面角A-DE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,底面為正方形的四棱錐PABCD中,AB=2PA=4,PB=PD=,ACBD相交于點OEPD中點.

(1)求證:EO//平面PBC;

(2)設線段BC上點F滿足CF=2BF,求銳二面角EOFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.

(Ⅰ)求橢圓的方程:

(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求證:曲線處的切線重合;

(Ⅱ)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案