10.如果實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,則z=3x+2y的最大值為7.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=1}\\{2x+y-4=0}\end{array}\right.$,解得A(1,2),
化目標(biāo)函數(shù)z=3x+2y為y=$-\frac{3}{2}x+\frac{z}{2}$,由圖可知,當(dāng)直線y=$-\frac{3}{2}x+\frac{z}{2}$過A時(shí),直線在y軸上的截距最大,z有最大值為7.
故答案為:7.

點(diǎn)評(píng) 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若方程lg2x•lg3x+a2=0有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.并求方程的兩個(gè)根之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.微信是騰訊公司推出的一種手機(jī)通訊軟件,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶為“A組”,否則為“B組”,調(diào)查結(jié)果如下:
A組B組合計(jì)
男性262450
女性302050
合計(jì)5644100
(Ⅰ)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“A組”用戶與“性別”有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈(zèng)送營養(yǎng)面膜1份,求所抽取5人中“A組”和“B組”的人數(shù);(Ⅲ)從(Ⅱ)中抽取的5人中再隨機(jī)抽取3人贈(zèng)送200元的護(hù)膚品套裝,記這3人中在“A組”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=4-t}\end{array}\right.$(t為參數(shù)),在以O(shè)為極點(diǎn)x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)Q是曲線C上的動(dòng)點(diǎn),求點(diǎn)Q到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐A-BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.
(1)若F是AD的中點(diǎn),求證:EF∥平面ABC;
(2)若AD=DE,求BE與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐A-BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.
(1)若F是AD的中點(diǎn),求證:EF∥平面ABC;
(2)M、N是棱BC的兩個(gè)三等分點(diǎn),求證:EM⊥平面ADN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列選項(xiàng)中,說法正確的是( 。
A.命題“?x0∈R,x02-x0≤0”的否定為“?x∈R,x2-x>0”
B.命題“在△ABC中,A>30°,則sinA>$\frac{1}{2}$”的逆否命題為真命題
C.設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件
D.若非零向量$\overrightarrow a$、$\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}$|,則$\overrightarrow a$與$\overrightarrow b$共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,若z1=1-2i,其中i是虛數(shù)單位,則$\frac{{z}_{2}}{{z}_{1}}$的虛部為( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$iD.$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)=x3-1;當(dāng)-1≤x≤1時(shí),f(-x)=f(x);當(dāng)x>$\frac{1}{2}$時(shí),f(x+$\frac{1}{2}$)=f(x-$\frac{1}{2}$).則f(2017)=( 。
A.-2B.-2017C.2017D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案