【題目】已知一個正四面體和一個正四棱錐,它們的各條棱長均相等,則下列說法:

①它們的高相等;②它們的內(nèi)切球半徑相等;③它們的側(cè)棱與底面所成的線面角的大小相等;④若正四面體的體積為,正四棱錐的體積為,則;⑤它們能拼成一個斜三棱柱.其中正確的個數(shù)為(

A.1B.2C.3D.4

【答案】B

【解析】

①,正四面體的高,正四棱錐的高,所以該命題錯誤;

②,設(shè)正四面體的內(nèi)切球半徑為.設(shè)正四棱錐的內(nèi)切球半徑為.所以該命題不正確;

③,在正四面體中,就是側(cè)棱和底面所成的角,.在正四棱錐中,就是側(cè)棱和底面所成的角,,所以該命題不正確;

④,計算得.所以該命題正確;

⑤,把一個斜三棱柱分解成一個正四面體和正四棱錐,所以該命題正確.

設(shè)正四面體和正四棱錐的棱長都為,

①,,

所以正四面體的高.

如圖,正四棱錐的棱長都為2,它的高,

所以該命題不正確;

②,設(shè)正四面體的內(nèi)切球半徑為

,所以.

設(shè)正四棱錐的內(nèi)切球半徑為

,所以.

所以該命題不正確;

③,在正四面體中,就是側(cè)棱和底面所成的角,.

在正四棱錐中,就是側(cè)棱和底面所成的角,

所以該命題不正確;

④,若正四面體的體積為,,

正四棱錐的體積為,則.

所以該命題正確;

⑤,如圖,是一個斜三棱柱,其中四棱錐是一個棱長都為2的正四棱錐,四面體是棱長都為2的正四面體,所以它們能拼成一個斜三棱柱.所以該命題正確.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點是橢圓的一個焦點.

1)求拋物線的方程;

2)設(shè),為拋物線上的不同三點,點,且.求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校近幾年來通過書香校園主題系列活動,倡導(dǎo)學(xué)生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是(

A.2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長

B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7

C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3

D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有一塊矩形地塊,其中,,單位:百米.已知是一個游泳池,計劃在地塊內(nèi)修一條與池邊相切于點的直路(寬度不計),交線段于點,交線段于點.現(xiàn)以點為坐標原點,以線段所在直線為軸,建立平面直角坐標系,若池邊滿足函數(shù)的圖象,若點軸距離記為.

1)當時,求直路所在的直線方程;

2)當為何值時,地塊在直路不含泳池那側(cè)的面積取到最大,最大值時多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)試比較的大小.

2)若函數(shù)的兩個零點分別為,

①求的取值范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖數(shù)據(jù)如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹苗的中位數(shù)大于乙種樹苗的中位數(shù),且甲種樹苗比乙種樹苗長得整齊

B.甲種樹苗的中位數(shù)大于乙種樹苗的中位數(shù),但乙種樹苗比甲種樹苗長得整齊

C.乙種樹苗的中位數(shù)大于甲種樹苗的中位數(shù),且乙種樹苗比甲種樹苗長得整齊

D.乙種樹苗的中位數(shù)大于甲種樹苗的中位數(shù),但甲種樹苗比乙種樹苗長得整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的圖象在點處的切線平行于軸,求函數(shù)上的最小值;

2)若關(guān)于的方程上有兩個解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)在點P(1,)處的切線方程;

(2)若關(guān)于x的不等式有且僅有三個整數(shù)解,求實數(shù)t的取值范圍;

(3)存在兩個正實數(shù),滿足,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,,,分別是下表第一、二、三行中的某一個數(shù),且,,中的任何兩個數(shù)都不在下表的同一列.

第一列

第二列

第三列

第一行

第二行

4

6

9

第三行

12

8

7

請從①,②,的三個條件中選一個填入上表,使?jié)M足以上條件的數(shù)列存在;并在此存在的數(shù)列中,試解答下列兩個問題

1)求數(shù)列的通項公式;

2)設(shè)數(shù)列滿足,求數(shù)列的前n項和

查看答案和解析>>

同步練習(xí)冊答案