【題目】已知a,b,c分別是△ABC的角A,B,C所對(duì)的邊,且c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.
【答案】
(1)解:∵c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcosC,
∴4=a2+b2﹣ab,
∵ = ,化為ab=4.
聯(lián)立 ,解得a=2,b=2.
(2)解:∵sinC=sin(B+A),sinC+sin(B﹣A)=2sin2A,
∴sin(A+B)+sin(B﹣A)=2sin2A,
2sinBcosA=4sinAcosA,
當(dāng)cosA=0時(shí),解得A= ;
當(dāng)cosA≠0時(shí),sinB=2sinA,
由正弦定理可得:b=2a,
聯(lián)立 ,解得 ,b= ,
∴b2=a2+c2,
∴ ,
又 ,∴ .
綜上可得:A= 或 .
【解析】(1)c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab,利用三角形面積計(jì)算公式 = ,即ab=4.聯(lián)立解出即可.(2)由sinC=sin(B+A),sinC+sin(B﹣A)=2sin2A,可得2sinBcosA=4sinAcosA.當(dāng)cosA=0時(shí),解得A= ;當(dāng)cosA≠0時(shí),sinB=2sinA,由正弦定理可得:b=2a,聯(lián)立解得即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號(hào)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,B1 C和C1D與底面A1B1C1D1所成的角分別為60°和45°,則異面直線B1C和C1D所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫(xiě)出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)的極坐標(biāo)分別為和,直線與曲線相交于兩點(diǎn),射線
與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若使方程有實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當(dāng)且僅當(dāng)n=9時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,求該數(shù)列首項(xiàng)a1的取值范圍( )
A.( , )
B.[ , ]
C.( , )
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下問(wèn)題:
①求面積為1的正三角形的周長(zhǎng);
②求鍵盤(pán)所輸入的三個(gè)數(shù)的算術(shù)平均數(shù);
③求鍵盤(pán)所輸入的兩個(gè)數(shù)的最小數(shù);
④求函數(shù)當(dāng)自變量取時(shí)的函數(shù)值.
其中不需要用條件語(yǔ)句來(lái)描述算法的問(wèn)題有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.
(1)求證:平面平面;
(2)若,且三棱錐的體積為,求側(cè)面的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn),曲線: (為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,有相同單位長(zhǎng)度的極坐標(biāo)系中,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)求與直線平行且與曲線相切的直線的直角坐標(biāo)方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com