【題目】設等差數列{an}滿足a3=5,a10=﹣9.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求{an}的前n項和Sn及使得Sn最大的序號n的值.
科目:高中數學 來源: 題型:
【題目】如圖, ,
,
,
是圓柱底面圓周的四等分點,
是圓心,
,
,
與底面
垂直,底面圓的直徑等于圓柱的高.
(1)證明: ;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: +
=1(a>b>0)過點A(1,
),其焦距為2.
(1)求橢圓C1的方程;
(2)已知橢圓具有如下性質:若橢圓的方程為 +
=1(a>b>0),則橢圓在其上一點A(x0 , y0)處的切線方程為
+
=1,試運用該性質解決以下問題:
(i)如圖(1),點B為C1在第一象限中的任意一點,過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點,求△OCD面積的最小值;
(ii)如圖(2),過橢圓C2: +
=1上任意一點P作C1的兩條切線PM和PN,切點分別為M,N.當點P在橢圓C2上運動時,是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的不恒為零的函數,且對于任意實數x,y滿足:f(2)=2,f(xy)=xf(y)+yf(x),an= (n∈N*),bn=
(n∈N*),考查下列結論:
①f(1)=1;②f(x)為奇函數;③數列{an}為等差數列;④數列{bn}為等比數列.
以上命題正確的是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}中,已知an>0,a1+a2+a3=15,且a1+2,a2+5,a3+13構成等比數列{bn}的前三項.
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某蔬菜商店買進的土豆(噸)與出售天數
(天)之間的關系如下表所示:
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請根據上表數據在所給網格紙中繪制散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
(其中
保留2位有效數字);
(3)根據(2)中的計算結果,若該蔬菜商店買進土豆40噸,則預計可以銷售多少天(計算結果保留整數)?
附: ,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓E: 的左焦點為F1 , 右焦點為F2 , 離心率e=
.過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com