分析 (1)由題意和余弦定理可得cosA=$\frac{1}{2}$,可得A=$\frac{π}{3}$,
(2)由(1)可得C=$\frac{2π}{3}$-B,且B∈(0,$\frac{2π}{3}$),代入由三角函數(shù)公式化簡可得sinB+sinC=$\sqrt{3}$sin(B+$\frac{π}{6}$),由三角函數(shù)的值域可得.
解答 解:(1)∵在△ABC中,a,b,c成等比數(shù)列,
∴b2=ac,又a2-c2=ac-bc,∴a2-c2=b2-bc,
∴a2=c2+b2-bc,由余弦定理可得a2=c2+b2-2bccosA,
∴cosA=$\frac{1}{2}$,由A為三角形內(nèi)角可得A=$\frac{π}{3}$,
(2)由(1)和三角形內(nèi)角和可得C=$\frac{2π}{3}$-B,且B∈(0,$\frac{2π}{3}$),
∴sinB+sinC=sinB+sin($\frac{2π}{3}$-B)=sinB+$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB
=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵B∈(0,$\frac{2π}{3}$),∴B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
∴$\sqrt{3}$sin(B+$\frac{π}{6}$)∈($\frac{\sqrt{3}}{2}$,$\sqrt{3}$]
點(diǎn)評 本題考查解三角形,涉及余弦定理和三角函數(shù)公式公式以及三角函數(shù)的值域,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$) | B. | f(sin$\frac{π}{3}$)<f(cos$\frac{π}{3}$) | C. | f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$) | D. | f(sin$\frac{5π}{6}$)>f(cos$\frac{5π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com