已知數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和

(1);(2).

解析試題分析:本題主要考查由,等比數(shù)列的通項公式、對數(shù)式的運算、裂項相消法求和等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計算能力.第一問,利用求通項,得到的關(guān)系式,根據(jù)等比數(shù)列的定義證明數(shù)列為等比數(shù)列,再利用等比數(shù)列的通項公式求;第二問,先利用對數(shù)式的公式化簡,代入中再分離變量,利用裂項相消法求數(shù)列的前n項和.
(1)當時,由得:. 當時,、 ;
 ② 上面兩式相減,得:.    
所以數(shù)列是以首項為,公比為的等比數(shù)列. 得:.……6分
(2).  . ……10分
(12分)
考點:由,等比數(shù)列的通項公式、對數(shù)式的運算、裂項相消法求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù),且,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)滿足:.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,且對任意的正整數(shù),都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對任意的n∈N*,都有a1b1+a2b2+a3b3+···+anbn=n·2n+3
(1)若{bn}的首項為4,公比為2,求數(shù)列{an+bn}的前n項和Sn
(2)若a1=8.
①求數(shù)列{an}與{bn}的通項公式;
②試探究:數(shù)列{bn}中是否存在某一項,它可以表示為該數(shù)列中其它r(r∈N,r≥2)項的和?若存在,請求出該項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前n項和記為在直線上,.(1)若數(shù)列是等比數(shù)列,求實數(shù)的值;
(2)設(shè)各項均不為0的數(shù)列中,所有滿足的整數(shù)的個數(shù)稱為這個數(shù)列的“積異號數(shù)”,令),在(1)的條件下,求數(shù)列的“積異號數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知集合是正整數(shù)的一個排列,函數(shù)
 對于,定義:,稱的滿意指數(shù).排列為排列的生成列;排列為排列的母列.
(Ⅰ)當時,寫出排列的生成列及排列的母列;
(Ⅱ)證明:若中兩個不同排列,則它們的生成列也不同;
(Ⅲ)對于中的排列,定義變換:將排列從左至右第一個滿意指數(shù)為負數(shù)的項調(diào)至首項,其它各項順序不變,得到一個新的排列.證明:一定可以經(jīng)過有限次變換將排列變換為各項滿意指數(shù)均為非負數(shù)的排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知等差數(shù)列的前項和,滿足,則=(  )

A.-2015B.-2014C.-2013D.-2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若數(shù)列的各項按如下規(guī)律排列:
           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

項數(shù)為n的數(shù)列a1,a2,a3,…,an的前k項和為 (k=1,2,3,…,n),定義為該項數(shù)列的“凱森和”,如果項系數(shù)為99項的數(shù)列a1,a2,a3,…,a99的“凱森和”為1 000,那么項數(shù)為100的數(shù)列100,a1,a2,a3,…,a99的“凱森和”為(  )

A.991B.1 001 C.1 090D.1 100

查看答案和解析>>

同步練習(xí)冊答案