17.某幾何體的三視圖如圖所示,則其表面積為( 。
A.$12+2\sqrt{2}$B.$8+2\sqrt{2}$C.$4+4\sqrt{2}$D.$8+4\sqrt{2}$

分析 通過三視圖復(fù)原的幾何體是正四棱錐,結(jié)合三視圖的數(shù)據(jù),求出幾何體的體積.

解答 解:由題意三視圖可知,幾何體是正四棱錐,底面邊長為2的正方形,
一條側(cè)棱垂直正方形的一個頂點,長度為2,四棱錐的表面積為$V=2×2+2×\frac{1}{2}×2×2+2×\frac{1}{2}×2×2\sqrt{2}=8+4\sqrt{2}$.
故選D.

點評 本題是基礎(chǔ)題,考查三視圖復(fù)原幾何體的表面積的求法,考查計算能力,空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}2x+y≤4\\ x-y≥-1\\ x-2y≤2\end{array}\right.$,則$z=\frac{x}{2}+y$的取值范圍是$[-5,\frac{5}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a0+a2+a4=121.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為2.6日.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):lg2≈0.30,lg3≈0.48)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程是$\left\{\begin{array}{l}x=-1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2sinθ.
(Ⅰ) 求曲線C1與C2交點的平面直角坐標(biāo);
(Ⅱ) 點A,B分別在曲線C1,C2上,當(dāng)|AB|最大時,求△OAB的面積(O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F作某一漸近線的垂線,分別與兩漸近線相交于A,B兩點,若$\frac{|AF|}{|BF|}=\frac{1}{2}$,則雙曲線的離心率為2或$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等比數(shù)列{an}中各項均為正數(shù),Sn是其前n項和,且滿足2S3=8a1+3a2,a4=16,則S4=( 。
A.9B.15C.18D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地有a,b兩種“共享單車”(以下簡稱a型車,b型車).某學(xué)習(xí)小組7名同學(xué)調(diào)查了該地區(qū)共享單車的使用情況.
(Ⅰ)某日該學(xué)習(xí)小組進(jìn)行一次市場體驗,其中4人租到a型車,3人租到b型車.如果從組內(nèi)隨機(jī)抽取2人,求抽取的2人中至少有一人在市場體驗過程中租到a型車的概率;
(Ⅱ)根據(jù)已公布的2016年該地區(qū)全年市場調(diào)查報告,小組同學(xué)發(fā)現(xiàn)3月,4月的用戶租車情況城現(xiàn)如表使用規(guī)律.例如,第3個月租a型車的用戶中,在第4個月有60%的用戶仍租a型車.

第3個月
第4個月
租用a型車租用b型車
租用a型車60%50%
租用b型車40%50%
若認(rèn)為2017年該地區(qū)租用單車情況與2016年大致相同.已知2017年3月該地區(qū)租用a,b兩種車型的用戶比例為1:1,根據(jù)表格提供的信息,估計2017年4月該地區(qū)租用兩種車型的用戶比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤2\\ x-y≤2\\ 0≤x≤1\end{array}\right.$則z=2x+4y的最大值是( 。
A.-4B.2C.6D.8

查看答案和解析>>

同步練習(xí)冊答案