A. | 2 | B. | 4 | C. | 10 | D. | 16 |
分析 由題意利用正弦函數(shù)的圖象的對(duì)稱性可得ω•$\frac{π}{12}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,由此求得ω的最小值.
解答 解:根據(jù)函數(shù)$f(x)=sin(ωx+\frac{π}{6})$(其中ω>0)圖象的一條對(duì)稱軸方程為x=$\frac{π}{12}$,
可得ω•$\frac{π}{12}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,即ω=12k+4,故ω的最小值為4,
故選:B.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0>0,(x0-1)(x0+2)<0 | B. | ?x0<0,(x0-1)(x0+2)<0 | ||
C. | ?x>0,(x-1)(x+2)≥0 | D. | ?x<0,(x-1)(x+2)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
晉級(jí)成功 | 晉級(jí)失敗 | 合計(jì) | |
男 | 16 | ||
女 | 50 | ||
合計(jì) |
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{(\sqrt{5}-1)π}}{2}+2$ | B. | $\frac{{(\sqrt{5}+1)π}}{2}+2$ | C. | $\frac{π}{2}+3$ | D. | $\frac{{\sqrt{5}}}{2}π+2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com