17.如圖為某幾何體的三視圖,則其體積為(  )
A.π+$\frac{4}{3}$B.$\frac{π}{3}$+4C.$\frac{2}{3}$π+$\frac{4}{3}$D.$\frac{2}{3}$π+4

分析 由三視圖可知:該幾何體為一個圓柱的一半與一個四棱錐.

解答 解:由三視圖可知:該幾何體為一個圓柱的一半與一個四棱錐.
則體積V=$\frac{1}{2}×π×{1}^{2}×2$+$\frac{1}{3}×{2}^{2}×1$=$π+\frac{4}{3}$.
故選:A.

點評 本題考查了四棱錐與圓柱的三視圖、體積計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知正三棱柱ABC-A1B1C1的頂點都在同一個球面上,且該正三棱柱的體積為$\frac{\sqrt{3}}{2}$,三角形ABC周長為3,則這個球的體積為$\frac{16π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知關于x,y的二元一次方程組$\left\{\begin{array}{l}{ax+4y=a+2}\\{x+ay=a}\end{array}\right.$無解,則a=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.2017年1月1日,作為貴陽市打造“千園之城”27個示范性公元之一的泉湖公園正式開園,元旦期間,為了活躍氣氛,主辦方設置了水上挑戰(zhàn)項目向全體市民開放,現(xiàn)從到公園游覽的市民中隨機抽取了60名男生和40名女生共100人進行調查,統(tǒng)計出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
(1)根據(jù)條件完成下列2×2列聯(lián)表,并判斷是否在犯錯誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關?
  愿意 不愿意 總計
 男生   
 女生   
 總計   
(2)水上挑戰(zhàn)項目共有兩關,主辦方規(guī)定:挑戰(zhàn)過程依次進行,每一關都有兩次機會挑戰(zhàn),通過第一關后才有資格參與第二關的挑戰(zhàn),若甲參加每一關的每一次挑戰(zhàn)通過的概率均為$\frac{1}{2}$,記甲通過的關數(shù)為X,求X的分布列和數(shù)學期望.
參考公式與數(shù)據(jù):
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設f(x)=|x+1|-|x-4|.
(1)若f(x)≤-m2+6m恒成立,求實數(shù)m的取值范圍;
(2)設m的最大值為m0,a,b,c均為正實數(shù),當3a+4b+5c=m0時,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x),f′(x)是其導函數(shù),且滿足f(x)+f′(x)>2,f(1)=2+$\frac{4}{e}$,則不等式exf(x)>4+2ex的解集為(  )
A.(-∞,1)B.(1,+∞)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=exlnx-1,g(x)=$\frac{x}{{e}^{x}}$.
(Ⅰ)若g(x)=a在(0,2)上有兩個不等實根,求實數(shù)a的取值范圍;
(Ⅱ)證明:f(x)+$\frac{2}{eg(x)}$>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=kx,g(x)=2lnx+2e($\frac{1}{e}$≤x≤e2),若f(x)與g(x)的圖象上分別存在點M,N,使得MN關于直線y=e對稱,則實數(shù)k的取值范圍是[-$\frac{2}{e}$,2e].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在(x-$\frac{1}{x}$)10的二項展開式中,x4的系數(shù)等于( 。
A.-120B.-60C.60D.120

查看答案和解析>>

同步練習冊答案