已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫(huà)出的簡(jiǎn)圖;
(2)點(diǎn)是圓上第一象限內(nèi)的任意一點(diǎn),過(guò)作圓的切線交軌跡兩點(diǎn).
(i)證明:;
(ii)求的最大值.

(1),C的圖象是橢圓.
(2)(i) 。(ii)當(dāng)過(guò)點(diǎn)時(shí)取最大值2

解析試題分析:(1)設(shè),由題動(dòng)點(diǎn)M滿足:         1分

其中:,
...2分
代入,化簡(jiǎn)得:
C的圖象是橢圓,如圖所示.          4分
(2)(i)設(shè)
          5分
         6分
                       7分
(ii)解法一、設(shè)切線為,由題與圓相切,得,
8分
再由,得         9分
          10分
由(i)知,所以
11分
                      . 2分
,當(dāng)時(shí),取最大值2         13分
的最大值為2.          ...14分
解法二、
由(i)同理得,則

當(dāng)過(guò)點(diǎn)時(shí)取最大值2
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與圓、直線與橢圓的位置關(guān)系,弦長(zhǎng)公式。
點(diǎn)評(píng):中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。涉及弦長(zhǎng)問(wèn)題,一般要利用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。本題“幾何味”較濃,應(yīng)認(rèn)真分析幾何特征。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過(guò)點(diǎn)的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;
(1)寫(xiě)出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

動(dòng)圓M過(guò)定點(diǎn)A(-,0),且與定圓A´:(x-)2+y2=12相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)E、F,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合,且滿足,. 當(dāng)時(shí),試證明直線過(guò)定點(diǎn).過(guò)定點(diǎn)(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和為,設(shè)點(diǎn)的軌跡為曲線.
(1)寫(xiě)出的方程;
(2)設(shè)過(guò)點(diǎn)的斜率為)的直線與曲線交于不同的兩點(diǎn),,點(diǎn)軸上,且,求點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的直線與橢圓相切,直線軸交于點(diǎn),當(dāng)為何值時(shí)的面積有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),橢圓左右焦點(diǎn)分別為,上頂點(diǎn)為,為等邊三角形.定義橢圓C上的點(diǎn)的“伴隨點(diǎn)”為.
(1)求橢圓C的方程;
(2)求的最大值;
(3)直線l交橢圓CA、B兩點(diǎn),若點(diǎn)AB的“伴隨點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.橢圓C的右頂點(diǎn)為D,試探究ΔOAB的面積與ΔODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定直線動(dòng)圓M與定圓外切且與直線相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)設(shè)A、B是曲線C上兩動(dòng)點(diǎn)(異于坐標(biāo)原點(diǎn)O),若求證直線AB過(guò)一定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案