已知動點到點的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫出的簡圖;
(2)點是圓上第一象限內的任意一點,過作圓的切線交軌跡,兩點.
(i)證明:;
(ii)求的最大值.

(1),C的圖象是橢圓.
(2)(i) 。(ii)當過點時取最大值2

解析試題分析:(1)設,由題動點M滿足:         1分

其中:,
...2分
代入,化簡得:
C的圖象是橢圓,如圖所示.          4分
(2)(i)設,
          5分
         6分
                       7分
(ii)解法一、設切線為,由題與圓相切,得,
8分
再由,得         9分
          10分
由(i)知,所以
11分
                      . 2分
,當時,取最大值2         13分
的最大值為2.          ...14分
解法二、
由(i)同理得,則

過點時取最大值2
考點:本題主要考查橢圓的標準方程,橢圓的幾何性質,直線與圓、直線與橢圓的位置關系,弦長公式。
點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質,a,b,c,e的關系。曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。涉及弦長問題,一般要利用韋達定理,簡化解題過程。本題“幾何味”較濃,應認真分析幾何特征。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

以原點為極點,以軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為,設直線與曲線分別交于
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

動圓M過定點A(-,0),且與定圓A´:(x-)2+y2=12相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系xoy中,直線的參數(shù)方程為(t為參數(shù))。在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為。
(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)設圓C與直線交于點A、B,若點P的坐標為,求|PA|+|PB|。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點,與橢圓分別交于點,各點均不重合,且滿足. 當時,試證明直線過定點.過定點(1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,點到兩點,的距離之和為,設點的軌跡為曲線.
(1)寫出的方程;
(2)設過點的斜率為)的直線與曲線交于不同的兩點,,點軸上,且,求點縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相切,直線軸交于點,當為何值時的面積有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,橢圓左右焦點分別為,上頂點為,為等邊三角形.定義橢圓C上的點的“伴隨點”為.
(1)求橢圓C的方程;
(2)求的最大值;
(3)直線l交橢圓CAB兩點,若點A、B的“伴隨點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.橢圓C的右頂點為D,試探究ΔOAB的面積與ΔODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定直線動圓M與定圓外切且與直線相切.
(1)求動圓圓心M的軌跡C的方程;
(2)設A、B是曲線C上兩動點(異于坐標原點O),若求證直線AB過一定點,并求出定點的坐標.

查看答案和解析>>

同步練習冊答案