20.若f(x)=2xf'(1)+x2,則f'(0)等于(  )
A.-2B.4C.2D.-4

分析 根據(jù)題意,對(duì)f(x)求導(dǎo)可得f′(x)=2f'(1)+2x,令x=1可得:f′(1)=2f'(1)+2,解可得f′(1)的值,即可得f′(x)的解析式,將x=0代入可得f'(0)的值,即可得答案.

解答 解:根據(jù)題意,f(x)=2xf'(1)+x2,
則其導(dǎo)數(shù)f′(x)=2f'(1)+2x,
令x=1可得:f′(1)=2f'(1)+2,解可得f′(1)=-2,
則f′(x)=2×(-2)+2x=2x-4,
則f'(0)=-4;
故選:D.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的計(jì)算,關(guān)鍵求出f'(1)的值,確定函數(shù)的解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖1,在等腰直角三角形ABC中,∠B=90°,將△ABC沿中位線DE翻折得到如圖2所示的空間圖形,使二面角A-DE-C的大小為θ(0<θ<$\frac{π}{2}$).

(1)求證:平面ABD⊥平面ABC;
(2)若θ=$\frac{π}{3}$,求直線AE與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,D為BC的中點(diǎn),若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow$,則$\overrightarrow{AD}$為(  )
A.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$B.$\frac{1}{2}$$\overrightarrow$-$\overrightarrow{a}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知0<α<$\frac{π}{2}$,且cos($\frac{π}{2}+α$)=$-\frac{\sqrt{2}}{2}$,則sinα=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為了參加某數(shù)學(xué)競(jìng)賽,某高級(jí)中學(xué)對(duì)高二年級(jí)理科、文科兩個(gè)數(shù)學(xué)興趣小組的同學(xué)進(jìn)行了賽前模擬測(cè)試,成績(jī)(單位:分)記錄如下.
理科:79,81,81,79,94,92,85,89
文科:94,80,90,81,73,84,90,80
(1)畫(huà)出理科、文科兩組同學(xué)成績(jī)的莖葉圖;
(2)計(jì)算理科、文科兩組同學(xué)成績(jī)的平均數(shù)和方差,并從統(tǒng)計(jì)學(xué)的角度分析,哪組同學(xué)在此次模擬測(cè)試中發(fā)揮比較好;(參考公式:樣本數(shù)據(jù)x1,x2,…,xn的方差:${s^2}=\frac{1}{n}[{({x_1}-\overline x)^2}+{({x_2}-\overline x)^2}+…+{({x_n}-\overline x)^2}]$,其中$\overline x$為樣本平均數(shù))
(3)若在成績(jī)不低于90分的同學(xué)中隨機(jī)抽出3人進(jìn)行培訓(xùn),求抽出的3人中既有理科組同學(xué)又有文科組同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy中,不等式組$\left\{\begin{array}{l}x≥1\\ y≥x\\ x+y-3≤0\end{array}\right.$所表示的平面區(qū)域的面積為( 。
A.$\frac{2}{9}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(-\frac{x}{2}),x≤-1\\-\frac{1}{3}{x^2}+\frac{4}{3}x+\frac{2}{3},x>-1\end{array}\right.$,若f(x)在區(qū)間[m,4]上的值域?yàn)閇-1,2],則實(shí)數(shù)m的取值范圍為[-8,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知點(diǎn)O(0,0),A(3,0),B(0,4),P是△OAB的內(nèi)切圓上的一動(dòng)點(diǎn),設(shè)u=|PO|2+|PA|2+|PB|2,求u的最大值及相應(yīng)的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為M1,眾數(shù)為M2,平均值為$\overline x$,則(  )
A.M1=M2=$\overline x$B.M1=M2<$\overline x$C.M1<M2<$\overline x$D.M2<M1<$\overline x$

查看答案和解析>>

同步練習(xí)冊(cè)答案