6.已知直角△ABC,AB=AC=3,P,Q分別為邊AB,BC上的點(diǎn),M,N是平面上兩點(diǎn),若$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,且直線MN經(jīng)過(guò)△ABC的外心,則$|\overrightarrow{BP}|$=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.2

分析 建立坐標(biāo)系,利用坐標(biāo)法將直角三角形放入坐標(biāo)系中,根據(jù)$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,得到A是PM的中點(diǎn),以及PQ⊥BC,結(jié)合三角形的長(zhǎng)度關(guān)系轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解即可.

解答 解:建立坐標(biāo)系將,將直角三角形放入坐標(biāo)系中,
若$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,則$\overrightarrow{AP}$=-$\overrightarrow{AM}$=$\overrightarrow{MA}$,
即A是PM的中點(diǎn),
∵直線MN經(jīng)過(guò)△ABC的外心,
∴直線MN經(jīng)過(guò)BC的中點(diǎn)E,
∵($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,
∴$\overrightarrow{PQ}$•$\overrightarrow{BC}$=0,即PQ⊥BC,AE⊥BC,
則PN∥AE,PN=2AE=2×$\frac{3\sqrt{2}}{2}$=3$\sqrt{2}$,
∵$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,
∴PN=3PQ=3$\sqrt{2}$,
即PQ=$\sqrt{2}$,
直線BC的方程為x+y-3=0,
設(shè)P(0,m),0<m<3,
則PQ=$\frac{|m-3|}{\sqrt{2}}$=$\sqrt{2}$,即|m-3|=2,
則m=1或m=5(舍),
即P(0,1),則$|\overrightarrow{BP}|$=|BP|=2,
故選:D.

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,利用坐標(biāo)法結(jié)合數(shù)形結(jié)合,條件中點(diǎn)坐標(biāo)公式以及直線垂直的條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將函數(shù)f(x)=cos(x+φ)的圖象上每點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再將所得的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度后得到的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則下列直線中是函數(shù)f(x)圖象的對(duì)稱軸的是( 。
A.x=-$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=-$\frac{5π}{12}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測(cè)一個(gè)橋墩的工程費(fèi)用為256萬(wàn)元,距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+$\sqrt{x}$)x萬(wàn)元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬(wàn)元.假設(shè)需要新建n個(gè)橋墩.
(1)寫(xiě)出n關(guān)于x的函數(shù)關(guān)系式;
(2)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使y最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某校為了解一個(gè)英語(yǔ)教改實(shí)驗(yàn)班的情況,舉行了一次測(cè)試,將該班30位學(xué)生的英語(yǔ)成績(jī)進(jìn)行統(tǒng)計(jì),得圖示頻率分布直方圖,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求出該班學(xué)生英語(yǔ)成績(jī)的眾數(shù),平均數(shù)及中位數(shù);
(Ⅱ)從成績(jī)低于80分的學(xué)生中隨機(jī)抽取2人,規(guī)定抽到的學(xué)生成績(jī)?cè)赱50,60)的記1績(jī)點(diǎn)分,在[60,80)的記2績(jī)點(diǎn)分,設(shè)抽取2人的總績(jī)點(diǎn)分為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若兩圓x2+y2-2mx=0與x2+(y-2)2=1相外切,則實(shí)數(shù)m的值為( 。
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$±\frac{3}{2}$D.$±\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在xOy平面上,點(diǎn)A,B在單位圓上,已知A(1,0),∠AOB=θ(0<θ<π)
(Ⅰ)若點(diǎn)B(-$\frac{3}{5}$,$\frac{4}{5}$),求$\frac{sin(π+θ)+cos(\frac{3π}{2}-θ)}{cos(\frac{π}{2}+θ)tan(π-θ)}$的值;
(Ⅱ)若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,$\overrightarrow{OB}•\overrightarrow{OC}=\frac{18}{13}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=1.且對(duì)于任意實(shí)數(shù)x,不等式|$\overrightarrow{a}$+x$\overrightarrow$|≥|$\overrightarrow{a}$+$\overrightarrow$|恒成立,設(shè)$\overrightarrow{a}$,$\overrightarrow$的夾角為θ.則sinθ等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若2弧度的圓心角所夾的扇形的面積是4cm2,則該圓心角所對(duì)的弧長(zhǎng)為( 。
A.2πcmB.2cmC.4πcmD.4cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解》(1261年)一書(shū)中,用如圖(1)的三角形,解釋二項(xiàng)和的乘方規(guī)律.在歐洲直到1623年以后,法國(guó)數(shù)學(xué)家布萊士•帕斯卡的著作(1655年)介紹了這個(gè)三角形.近年來(lái)國(guó)外也逐漸承認(rèn)這項(xiàng)成果屬于中國(guó),所以有些書(shū)上稱這是“中國(guó)三角形”( Chinese triangle)如圖(1),17世紀(jì)德國(guó)數(shù)學(xué)家萊布尼茨發(fā)現(xiàn)了“萊布尼茨三角形”如圖(2).在楊輝三角中相鄰兩行滿足關(guān)系式:Cnr+Cnr+1=Cn+1r+1,其中n是行數(shù),r∈N.請(qǐng)類(lèi)比上式,在萊布尼茲三角中相鄰兩行滿足的關(guān)系式是$\frac{1}{{C_{n+1}^1C_n^r}}=\frac{1}{{C_{n+2}^1C_{n+1}^r}}+\frac{1}{{C_{n+2}^1C_{n+1}^{r+1}}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案