某商區(qū)停車(chē)場(chǎng)臨時(shí)停車(chē)按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車(chē)一次停車(chē)不超過(guò)小時(shí)收費(fèi)元,超過(guò)小時(shí)的部分每小時(shí)收費(fèi)元(不足小時(shí)的部分按小時(shí)計(jì)算).現(xiàn)有甲、乙二人在該商區(qū)臨時(shí)停車(chē),兩人停車(chē)都不超過(guò)小時(shí).
(1)若甲停車(chē)小時(shí)以上且不超過(guò)小時(shí)的概率為,停車(chē)付費(fèi)多于元的概率為,求甲停車(chē)付費(fèi)恰為元的概率;
(2)若每人停車(chē)的時(shí)長(zhǎng)在每個(gè)時(shí)段的可能性相同,求甲、乙二人停車(chē)付費(fèi)之和為元的概率.

(1)(2)

解析試題分析:(Ⅰ)解:設(shè)“甲臨時(shí)停車(chē)付費(fèi)恰為元”為事件,       
.所以甲臨時(shí)停車(chē)付費(fèi)恰為元的概率是.  
(Ⅱ)解:設(shè)甲停車(chē)付費(fèi)元,乙停車(chē)付費(fèi)元,其中.  
則甲、乙二人的停車(chē)費(fèi)用構(gòu)成的基本事件空間為:
,共種情形.      
其中,種情形符合題意  
故“甲、乙二人停車(chē)付費(fèi)之和為元”的概率為
考點(diǎn):概率
點(diǎn)評(píng):幾何概型的概率是?键c(diǎn)。求幾何概型的概率,只要求出事件占總的比例即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校50名學(xué)生參加智力答題活動(dòng),每人回答3個(gè)問(wèn)題,答對(duì)題目個(gè)數(shù)及對(duì)應(yīng)人數(shù)統(tǒng)計(jì)結(jié)果見(jiàn)下表:

答對(duì)題目個(gè)數(shù)
0
1
2
3
人數(shù)
5
10
20
15
根據(jù)上表信息解答以下問(wèn)題:
(Ⅰ)從50名學(xué)生中任選兩人,求兩人答對(duì)題目個(gè)數(shù)之和為4或5的概率;
(Ⅱ)從50名學(xué)生中任選兩人,用X表示這兩名學(xué)生答對(duì)題目個(gè)數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

因金融危機(jī),某公司的出口額下降,為此有關(guān)專(zhuān)家提出兩種促進(jìn)出口的方案,每種方案都需要分兩年實(shí)施。若實(shí)施方案一,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的倍、倍、倍的概率分別為、;第二年可以使出口額為第一年的倍、倍的概率分別為、。若實(shí)施方案二,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的倍、倍、倍的概率分別為、;第二年可以使出口額為第一年的倍、倍的概率分別為、。實(shí)施每種方案第一年與第二年相互獨(dú)立。令表示方案實(shí)施兩年后出口額達(dá)到危機(jī)前的倍數(shù)。
(1)寫(xiě)出的分布列;
(2)實(shí)施哪種方案,兩年后出口額超過(guò)危機(jī)前出口額的概率更大?
(3)不管哪種方案,如果實(shí)施兩年后出口額達(dá)不到、恰好達(dá)到、超過(guò)危機(jī)前出口額,預(yù)計(jì)利潤(rùn)分別為萬(wàn)元、萬(wàn)元、萬(wàn)元,問(wèn)實(shí)施哪種方案的平均利潤(rùn)更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判.設(shè)各局中雙方獲勝的概率均為,各局比賽的結(jié)束相互獨(dú)立,第1局甲當(dāng)裁判.
(Ⅰ)求第4局甲當(dāng)裁判的概率;
(Ⅱ)X表示前4局中乙當(dāng)裁判的次數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

袋中有8個(gè)大小相同的小球,其中1個(gè)黑球,3個(gè)白球,4個(gè)紅球.
(I)若從袋中一次摸出2個(gè)小球,求恰為異色球的概率;
(II)若從袋中一次摸出3個(gè)小球,且3個(gè)球中,黑球與白球的個(gè)數(shù) 都沒(méi)有超過(guò)紅球的個(gè)數(shù),記此時(shí)紅球的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從集合中任取三個(gè)元素構(gòu)成三元有序數(shù)組,規(guī)定
(1)從所有三元有序數(shù)組中任選一個(gè),求它的所有元素之和等于10的概率;
(2)定義三元有序數(shù)組的“項(xiàng)標(biāo)距離”為,(其中,從所有三元有序數(shù)組中任選一個(gè),求它的“項(xiàng)標(biāo)距離”為偶數(shù)的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

考察某種藥物預(yù)防甲型H1N1流感的效果,進(jìn)行動(dòng)物試驗(yàn),調(diào)查了100個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服用藥的共有60個(gè)樣本,服用藥但患病的仍有20個(gè)樣本,沒(méi)有服用藥且未患病的有20個(gè)樣本.
(Ⅰ)根據(jù)所給樣本數(shù)據(jù)完成下面2×2列聯(lián)表;
(Ⅱ)請(qǐng)問(wèn)能有多大把握認(rèn)為藥物有效?

 
不得流感
得流感
總計(jì)
服藥
 
 
 
不服藥
 
 
 
總計(jì)
 
 
 
(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某廠(chǎng)生產(chǎn)的產(chǎn)品在出廠(chǎng)前都要做質(zhì)量檢測(cè),每一件一等品都能通過(guò)檢測(cè),每一件二等品通過(guò)檢測(cè)的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(1)隨機(jī)選取1件產(chǎn)品,求能夠通過(guò)檢測(cè)的概率;
(2)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;
(3)隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過(guò)檢測(cè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖是一個(gè)從的”闖關(guān)”游戲.

規(guī)則規(guī)定:每過(guò)一關(guān)前都要拋擲一個(gè)在各面上分別標(biāo)有1,2,3,4的均勻的正四面體.在過(guò)第n(n=1,2,3)關(guān)時(shí),需要拋擲n次正四面體,如果這n次面朝下的數(shù)字之和大于則闖關(guān)成功.
(1)求闖第一關(guān)成功的概率;
(2)記闖關(guān)成功的關(guān)數(shù)為隨機(jī)變量X,求X的分布列和期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案