【題目】已知函數.
(1)若為單調函數,求a的取值范圍;
(2)若函數僅一個零點,求a的取值范圍.
【答案】(1)(2)或
【解析】
(1)對求導得,因為為單調函數,故或恒成立,利用導數研究或哪個能成立即可;
(2)因為,所以是的一個零點,由(1)可知,當時,為上的增函數,所以僅有一個零點,滿足題意,當時,得,分,,討論驗證即可.
解析:(1)由(),得
,
因為為單調函數,
所以當時,或恒成立,
由于,于是只需或對于恒成立,
令,則,
當時,,所以為增函數,
則.又當時,,
則不可能恒成立,即不可能為單調減函數.
當,即時,恒成立,
此時函數為單調遞增函數.
(2)因為,所以是的一個零點.
由(1)知,當時,為的增函數,
此時關于x的方程僅一解,即函數僅一個零點,滿足條件.
當時,由得,
(ⅰ)當時,,
則,
令,
易知為的增函數,且,
所以當時,,即,為減函數,
當時,,即,為增函數,
所以,
在上恒成立,且僅當,于是函數僅一個零點.
所以滿足條件.
(ⅱ)當時,由于在為增函數,
則,當時,.
則存在,使得,即使得,
當時,,
當時,,
所以,且當時,.
于是當時存在的另一解,不符合題意,舍去.
(ⅲ)當時,則在為增函數,
又,,
所以存在,使得,也就使得,
當時,,
當時,,
所以,且當時,.
于是在時存在的另一解,不符合題意,舍去.
綜上,a的取值范圍為或.
科目:高中數學 來源: 題型:
【題目】下列命題中,正確的個數是( )
①直線上有兩個點到平面的距離相等,則這條直線和這個平面平行;
②為異面直線,則過且與平行的平面有且僅有一個;
③直四棱柱是直平行六面體;
④兩相鄰側面所成角相等的棱錐是正棱錐.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點,且與定直線相切.
(1)求動圓圓心的軌跡的方程;
(2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:上一點到焦點的距離為4,動直線交拋物線于坐標原點O和點A,交拋物線的準線于點B,若動點P滿足,動點P的軌跡C的方程為.
(1)求出拋物線的標準方程;
(2)求動點P的軌跡方程;
(3)以下給出曲線C的四個方面的性質,請你選擇其中的三個方面進行研究:①對稱性;②范圍;③漸近線;④時,寫出由確定的函數的單調區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】部分與整體以某種相似的方式呈現稱為分形,一個數學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學不僅讓人們感悟到科學與藝木的融合,數學與藝術審美的統(tǒng)一,而且還有其深刻的科學方法論意義.如圖,由波蘭數學家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形.
若在圖④中隨機選取-點,則此點取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點.
(1)若為線段上的動點,證明:平面平面;
(2)若為線段,,上的動點(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】劉徽《九章算術商功》中將底面為長方形,兩個三角面與底面垂直的四棱錐體叫做陽馬.如圖,是一個陽馬的三視圖,則其外接球的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市交通管理部門為了解市民對機動車“單雙號限行”的態(tài)度,隨機采訪了100名市民,將他們的意見和是否擁有私家車的情況進行了統(tǒng)計,得到了如下的列聯表:
贊同限行 | 不贊同限行 | 合計 | |
沒有私家車 | 15 | ||
有私家車 | 45 | ||
合計 | 100 |
已知在被采訪的100人中隨機抽取1人且抽到“贊同限行”者的概率是.
(1)請將上面的列聯表補充完整;
(2)根據上面的列聯表判斷能否在犯錯誤的概率不超過0.10的前提下認為“對限行的態(tài)度與是否擁有私家車有關”;
(3)將上述調查所得到的頻率視為概率.現在從該市大量市民中,采用隨機抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數為.若每次抽取的結果是相互獨立的,求的分布列、期望和方差.
附:參考公式:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,分別為雙曲線的左、右焦點,點P是以為直徑的圓與C在第一象限內的交點,若線段的中點Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com