【題目】已知拋物線:上一點到焦點的距離為4,動直線交拋物線于坐標原點O和點A,交拋物線的準線于點B,若動點P滿足,動點P的軌跡C的方程為.
(1)求出拋物線的標準方程;
(2)求動點P的軌跡方程;
(3)以下給出曲線C的四個方面的性質(zhì),請你選擇其中的三個方面進行研究:①對稱性;②范圍;③漸近線;④時,寫出由確定的函數(shù)的單調(diào)區(qū)間.
【答案】(1);(2);(3)見解析.
【解析】
(1)根據(jù)拋物線上的點到焦點的距離等于到準線的距離列式求解即可.
(2)求出的坐標,利用動點P滿足,求出動點P的軌跡C的方程即可.
(3)根據(jù)(2)中所得的方程直接得出結(jié)論即可.
(1)由題意,,所以
所以拋物線的標準方程為
(2)設(shè),則與拋物線方程聯(lián)立,可得,即,與聯(lián)立,可得.因為,所以,所以,故,.
消去可得
(3)由,可得
①因為,,故關(guān)于軸對稱;
②范圍:,則.即
又當時, ,
故,即或.
故,
③因為分母為,故漸近線
④當時,因為,所以由確定的函數(shù)為,即
,
當時,單調(diào)遞減;當時,單調(diào)遞增
故在上遞減,在上遞增.
綜上所述,
①關(guān)于軸對稱
②,
③漸近線
④時,由確定的函數(shù)在上遞減,在上遞增
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點與的距離和它到直線的距離的比是常數(shù).
求點M的軌跡C的方程;
設(shè)N是圓E:上位于第四象限的一點,過N作圓E的切線,與曲線C交于A,B兩點求證:的周長為10.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點,上一點坐標為.
(1)求拋物線的方程;
(2)過作直線,交拋物線于,兩點,若直線中點的縱坐標為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:=1(a>b>0)的兩個焦點以及兩個頂點,且點(b,)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點,且|MN|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,AB=AA1=,AC=2,∠BAC=∠A1AC=45°,∠BAA1=60°,F為棱AC的中點,E在棱BC上,且BE=2EC.
(Ⅰ)求證:A1B∥平面EFC1;
(Ⅱ)求三棱柱ABC-A1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需要,兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( 。
甲 | 乙 | 原料限額 | |
(噸) | 3 | 2 | 10 |
(噸) | 1 | 2 | 6 |
A. 10萬元B. 12萬元C. 13萬元D. 14萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}前n項和為Sn,滿足Sn+1=4an+2(n∈N+),且a1=1,
(1)若cn,求證:數(shù)列{cn}是等差數(shù)列.
(2)求數(shù)列{an}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com