7.已知sin(α-$\frac{2π}{3}}$)=$\frac{1}{4}$,則sin(α+$\frac{π}{3}}$)=$-\frac{1}{4}$.

分析 利用兩角差與和的正弦函數(shù)公式,特殊角的三角函數(shù)值化簡已知即可得解.

解答 解:∵sin(α-$\frac{2π}{3}}$)=-$\frac{1}{2}$sinα-$\frac{\sqrt{3}}{2}$cosα=$\frac{1}{4}$,
∴-($\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα)=-sin(α+$\frac{π}{3}$)=$\frac{1}{4}$,
∴sin(α+$\frac{π}{3}}$)=$-\frac{1}{4}$.
故答案為:$-\frac{1}{4}$.

點評 本題主要考查了兩角差與和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=|x-2|,g(x)=m|x|-2,(m∈R).
(1)解關(guān)于x的不等式f(x)>x+3;
(2)若對于任意x∈R,有f(x)-g(x)≥0,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.7名同學排成一排,其中甲、乙兩人必須排在一起的不同排法有1440種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.過點M(-2,4)作圓C:(x-2)2+(y-1)2=25的切線l,又直線l1:ax+3y+2a=0與直線l平行,則直線l與l1之間的距離為2.4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.對于問題:已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0,給出如下解法:
解:由關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為($\frac{1}{2}$,3),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為$({\frac{1}{3},2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若兩個正實數(shù)x,y滿足$\frac{1}{x}$+$\frac{4}{y}$=1,且不等式x+$\frac{y}{4}$<m2-3m有解,則實數(shù)m的取值范圍是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.a(chǎn)rctan$\sqrt{3}$-arcsin(-$\frac{1}{2}$)+arccos0的值為(  )
A.$\frac{5π}{6}$B.πC.0D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.作出函數(shù)y=sin(x-$\frac{π}{6}$)+1在[$\frac{π}{6}$,$\frac{13}{6}$π]的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.7個學生排成一排,在下列情況下,各有多少種不同排法?
(1)甲排頭,
(2)甲不排頭,也不排尾,
(3)甲、乙、丙三人必須在一起,
(4)甲、乙之間有且只有兩人,
(5)甲、乙、丙三人兩兩不相鄰.

查看答案和解析>>

同步練習冊答案