已知表示的平面區(qū)域包含點(0,0)和(,1),則的取值范圍是
A.(,6)B.(0,6)C.(0,3)D.(,3)
C

分析:根據(jù)點(0,0)和(-1,1)在|2x-y+m|<3表示的平面區(qū)域內則點的坐標適合該不等式,建立不等式組,解之即可.
解:∵點(0,0)和(-1,1)在|2x-y+m|<3表示的平面區(qū)域內
∴點的坐標適合該不等式即
解得:0<m<3
故選C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若不等式組表示的平面區(qū)域是一個三角形,則a的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,若不等式組為常數(shù))所表示的平面區(qū)域內的面積等于,則______。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,求x2+y2的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知滿足約束條件的最小值為—6,則常數(shù)   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設二元一次不等式組所表示的平面區(qū)域為,使函數(shù)的圖象過區(qū)域的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某工廠生產甲、乙兩種產品,計劃每天每種產品的生產量不少于15噸,已知生產甲產品1噸,需煤9噸,電力4千瓦時,勞力3個;生產乙產品1噸,需煤4噸,電力5千瓦時,勞力10個;甲產品每噸的利潤為7萬元,乙產品每噸的利潤為12萬元;但每天用煤不超過300噸,電力不超過200千瓦時,勞力只有300個.問每天生產甲、乙兩種產品各多少噸,才能使利潤總額達到最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.某人上午7時,乘摩托艇以勻速海里/時(4≤≤20)從港出發(fā)到距50海里的港去,然后乘汽車以千米/時(30≤≤100)自港向距300千米的市駛去,應該在同一天下午4至9點到達市.設汽車、摩托艇所需的時間分別是小時.
(1)寫出所滿足的條件,并在所給的平面直角坐標系內,作出表示范圍的圖形;
(2)如果已知所需的經費(元),那么分別是多少時走得最經濟?此時需花費多少元?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

、滿足約束條件:,則的最小值是       .

查看答案和解析>>

同步練習冊答案