【題目】已知橢圓的一個焦點為,上頂點為,原點O到直線的距離為.

(1)求橢圓C的標準方程;

(2)若點T在圓上,點A為橢圓的右頂點,是否存在過點A的直線l交橢圓C于點B(異于點A),使得成立?若存在,求出直線l的方程;若不存在,請說明理由.

【答案】(1) (2) 存在滿足條件的直線,其方程為.

【解析】

1)根據(jù)條件列方程組,解得即可,(2)設直線方程,與橢圓方程聯(lián)立方程組,利用韋達定理解得B點坐標,再根據(jù)條件得T點坐標,代入圓方程,解得直線斜率,即得結果.

解:(1)由橢圓的一個焦點為知:,即.①.

又因為直線的方程為,即,所以.

由①解得.

故所求橢圓的標準方程為.

(2)假設存在過點的直線適合題意,則結合圖形易判斷知直線的斜率必存在,

于是可設直線的方程為

,得.(*)

因為點是直線與橢圓的一個交點,且

所以,所以,

即點.

所以,即.

因為點在圓上,所以

化簡得,解得,所以.

經(jīng)檢驗知,此時(*)對應的判別式,滿足題意.

故存在滿足條件的直線,其方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的離心率為,其兩個頂點和兩個焦點構成的四邊形面積為

1)求橢圓C的方程;

2)過點的直線l與橢圓C交于A,B兩點,且點M恰為線段AB的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線的左、右焦點為,右支上的動點(非頂點),的內(nèi)心.變化時,的軌跡為(

A.直線的一部分B.橢圓的一部分

C.雙曲線的一部分D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合.

1)求證:平面平面

2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研究投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:

試銷價格(元)

產(chǎn)品銷量(件)

已知變量具有線性相關關系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲/span>;乙;丙,其中有且僅有一位同學的計算結果是正確的.

(1)試判斷誰的計算結果正確?求回歸方程。

(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”.現(xiàn)從檢測數(shù)據(jù)中隨機抽取3個,求“理想數(shù)據(jù)”的個數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

某學校高一數(shù)學興趣小組對學生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學生,記錄并整理了這些學生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時數(shù)工(單位:小時)

14

11

13

12

9

體育成績優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關于x的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設關于的一元二次方程,其中是某范圍內(nèi)的隨機數(shù),分別在下列條件下,求上述方程有實根的概率.

1)若隨機數(shù);

2)若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是首項為1,公差為的等差數(shù)列,數(shù)列是首項為1,公比為的等比數(shù)列.

(1)若,求數(shù)列的前項和;

(2)若存在正整數(shù),使得,試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點在原點,焦點在軸上的拋物線過點.

1)求拋物線的標準方程;

2)斜率為的直線與拋物線交于、兩點,點是線段的中點,求直線的方程,并求線段的長.

查看答案和解析>>

同步練習冊答案