【題目】如圖①,在等腰梯形中,分別為的中點(diǎn) 中點(diǎn),現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中.

(1)證明:

(2)求三棱錐的體積.

【答案】(Ⅰ)見(jiàn)解析(Ⅱ)

【解析】

(Ⅰ)由已知可得EFAB,EFCD,折疊后,EFDF,EFCF,利用線面垂直的判定得EF⊥平面DCF,從而得到EFMC;(Ⅱ)由已知可得,AEBE1,DFCF2,又DM1,得到MF1AE,然后證明AMDF,進(jìn)一步得到BE⊥平面AEFD,再由等積法求三棱錐MABD的體積.

(Ⅰ)由題意,可知在等腰梯形中,

,分別為的中點(diǎn),

,.

∴折疊后,.

,∴平面.

平面,∴.

(Ⅱ)易知,.

,∴.

,∴四邊形為平行四邊形.

,故.

∵平面平面,平面平面,且,

平面.

.

即三棱錐的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)上存在滿足,則稱函數(shù)是在上的“雙中值函數(shù)”,已知函數(shù)上的“雙中值函數(shù)”,則函數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國(guó)道路交通安全法》第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程

(2)預(yù)測(cè)該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式: , .

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)定點(diǎn)且與直線垂直的直線與軸、軸分別交于點(diǎn),點(diǎn)滿足.

1)若以原點(diǎn)為圓心的圓有唯一公共點(diǎn),求圓的軌跡方程;

2)求能覆蓋的最小圓的面積;

3)在(1)的條件下,點(diǎn)在直線上,圓上總存在兩個(gè)不同的點(diǎn)使得為坐標(biāo)原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直三棱柱中,,的中點(diǎn),上一點(diǎn),且.

1)證明:平面

2)求二面角余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】青島二中高一高二高三三個(gè)年級(jí)數(shù)學(xué)MT的學(xué)生人數(shù)分別為240人,240人,120人,現(xiàn)采用分層抽樣的方法從中抽取5名同學(xué)參加團(tuán)隊(duì)內(nèi)部舉辦的趣味數(shù)學(xué)比賽,再?gòu)?/span>5位同學(xué)中選出2名一等獎(jiǎng)記A兩名一等獎(jiǎng)來(lái)自同一年級(jí),則事件A的概率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是兩條異面直線,直線都垂直,則下列說(shuō)法正確的是( )

A. 平面,則

B. 平面,則,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面是邊長(zhǎng)為1的菱形,,,,、分別為的中點(diǎn).

1)證明:直線平面;

2)求異面直線所成角的大小;

3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,、均垂直于平面,,.

1)求與平面所成角的大小;

2)求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案