4.若函數(shù)f(x)=a3-cosx,則f'(a)=(  )
A.3a2+sinaB.3a2-sinaC.sinaD.cosa

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo),再代值計(jì)算即可.

解答 解:∵f'(x)=sinx,
∴f'(a)=sina,
故選:C

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在(x2+$\frac{1}{ax}$)6的二項(xiàng)展開式中,所有二項(xiàng)式系數(shù)之和為64(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某四棱錐的三視圖,則該幾何體的體積為( 。
A.15B.16C.$\frac{50}{3}$D.$\frac{53}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)$y=sinx-\sqrt{3}cosx$的圖象可由函數(shù)$y=\sqrt{3}sinx+cosx$的圖象至少向右平移$\frac{π}{2}$個(gè)單位長(zhǎng)度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知k是正整數(shù),且1≤k≤2017,則滿足方程sin1°+sin2°+…+sink°=sin1°•sin2°…sink°的k有11個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.德國(guó)數(shù)學(xué)家科拉茨1937年提出一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即$\frac{n}{2}$);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則旅行變換后的第9項(xiàng)為1(注:1可以多次出現(xiàn)),則n的所有不同值的個(gè)數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成直角三角形,且三角形的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)F1,F(xiàn)2是橢圓C的左、右焦點(diǎn),過F1,F(xiàn)2任作兩條平行直線分別交橢圓于A,B和C,D不同四點(diǎn),求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.6人排成一排,若甲,乙,丙順序一定,有多少種不同的排法( 。
A.6B.24C.120D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓的中心在原點(diǎn),焦點(diǎn)為${F_1}(-2\sqrt{3},0),{F_2}(2\sqrt{3},0)$,且長(zhǎng)軸長(zhǎng)為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線y=x+2與橢圓相交于A,B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案