AB為過橢圓+=1中心的弦,F(c,0)為橢圓的右焦點,則△AFB面積的最大值是
A.b2B.ab
C.acD.bc
D
A(x0,y0),B(-x0,-y0),
SABF=SOFB+SOFA=c·|y0|+c·|-y0|=c·|y0|.
∵點AB在橢圓+=1上,
∴|y0|的最大值為b.
SABF的最大值為bc.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知A、B、C是橢圓E:=1(a>b>0)上的三點,其中點  
A的坐標為(2,0),BC過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(1)求點C的坐標及橢圓E的方程;
(2)若橢圓E上存在兩點P、Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標是(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一橢圓的兩焦點為F1(0,-1)、F2(0,1),直線y=4是該橢圓的一條準線.
(1)求此橢圓方程;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)求右焦點坐標是(2,0),且經(jīng)過點(-2,-)的橢圓C的標準  方程;
(2)對(1)中的橢圓C,設斜率為1的直線l交橢圓CA、B兩點,AB的中點為M,證明:當直線l平行移動時,動點M在一條過原點的定直線上;
(3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標出橢圓的中心.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,右焦點為,求連接和橢圓上任意一點的線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直角三角形ABC中B=,CB,則以C為焦點,且以A、B為頂點的橢圓的離心率為__________;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓=1的準線平行于x軸,則m應滿足的條件是(   )
A.m>B.m<且m≠0
C.m<D.m>且m≠1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知P是橢圓上的一點,F1、F2是橢圓的兩個焦點,∠PF1F2=90°,∠PF2F1=30°,則橢圓的離心率是__________.

查看答案和解析>>

同步練習冊答案