(本大題滿分14分)如圖,F(xiàn)為雙曲線C:的右焦點。P為雙曲線C右支上一點,且位于軸上方,M為左準線上一點,為坐標原點。已知四邊形為平行四邊形,
(Ⅰ)寫出雙曲線C的離心率的關(guān)系式;
(Ⅱ)當時,經(jīng)過焦點F且品行于OP的直線交雙曲線于A、B點,若,求此時的雙曲線方程。
(Ⅰ)。(Ⅱ)
解:(Ⅰ)∵四邊形,∴,作雙曲線的右準線交PM于H,則,又,
所以
(Ⅱ)當時,,,,雙曲線為
四邊形是菱形,所以直線OP的斜率為,則直線AB的方程為,代入到雙曲線方程得:,
,由得:,
解得,則,所以為所求。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,橢圓ab>0)的一個焦點為F(1,0),且過點(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AFBN交于點M.
(ⅰ)求證:點M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線,則拋物線上到直線距離最小的點的坐標為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
在平面直角坐標系中,已知點,點在直線上運動,過點垂直的直線和的中垂線相交于點
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)點是軌跡上的動點,點,軸上,圓為參數(shù))內(nèi)切于,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點分別是雙曲線的兩個焦點,P為該曲線上一點,若為等腰直角三角形,則該雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)
已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形。
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于。證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點在以原點為圓心的單位圓上運動,則點的軌跡是(      )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點作直線交拋物線于A、B兩點,若線段AB中的橫坐標為3,則|AB|等于  (   )
A.2                        B.4                       C.8                        D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線yx+1與橢圓mn>0)相交于A,B兩點,若弦AB的中點的橫坐標等于,則雙曲線的兩條漸近線的夾角的正切值等于_______.

查看答案和解析>>

同步練習冊答案