9.若函數(shù)y=f(x)的定義域是[0、1],則函數(shù)g(x)=$\frac{f(x)}{\sqrt{x-\frac{1}{2}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.[$\frac{1}{2}$,+∞]B.($\frac{1}{2}$,1)C.($\frac{1}{2}$,1]D.($\frac{1}{2}$,+∞)

分析 根據(jù)函數(shù)f(x)的定義域以及二次根式的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{0≤x≤1}\\{x-\frac{1}{2}>0}\end{array}\right.$,解得:$\frac{1}{2}$<x≤1,
故選:C.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.首位數(shù)字是1,且恰有兩個(gè)數(shù)字相同的四位數(shù)共有( 。
A.216個(gè)B.252個(gè)C.324個(gè)D.432個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}、{bn}、{cn}滿足(an+1-an)(bn+1-bn)=cn(n∈N*).
(1)設(shè)cn=2n+n,an=n+1,當(dāng)b1=1時(shí),求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=n3,an=n2-8n,求正整數(shù)k,使得一切n∈N*,均有bn≥bk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)為F(3,0),過點(diǎn)F且斜率為$\frac{1}{2}$的直線交橢圓于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( 。
A.$\frac{x^2}{45}+\frac{y^2}{36}=1$B.$\frac{x^2}{36}+\frac{y^2}{27}=1$C.$\frac{x^2}{27}+\frac{y^2}{18}=1$D.$\frac{x^2}{18}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知F1、F2分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),且右焦點(diǎn)F2的坐標(biāo)為(1,0),點(diǎn)P(1,$\frac{\sqrt{2}}{2}$)在橢圓C上,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)F2的直線l與橢圓C交于A,B兩點(diǎn),且|AB|=$\frac{4}{3}$$\sqrt{2}$,求直線l的方程;
(3)過橢圓C上異于其頂點(diǎn)的任一點(diǎn)Q,作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為M,N(M,N不在坐標(biāo)軸上),若直線MN在x軸、y軸上的截距分別為m、n,那么$\frac{1}{{m}^{2}}$+$\frac{2}{{n}^{2}}$是否為定值?若是,求出此定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知橢圓的長軸長是短軸長的2倍,則橢圓的焦距與短軸長之比為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-4lnx,g(x)=-2x2+12x.
(1)求f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(3)若函數(shù)f(x)與g(x)在區(qū)間(a,a+1)上均為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-2)=0,當(dāng)x>0時(shí),xf′(x)-f(x)>0,則使得f(x)>0成立的x的取值范圍是(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖是函數(shù)$f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<\frac{π}{2})$的圖象的一部分.
(1)求函數(shù)y=f(x)的解析式.
(2)若$f(α+\frac{π}{12})=\frac{3}{2},α∈[\frac{π}{2},π],求tan2α$.

查看答案和解析>>

同步練習(xí)冊(cè)答案