1.已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.

分析 (1)通過討論x的范圍,求得a-3≤x≤3.再根據(jù)不等式的解集為{x|-2≤x≤3},可得a-3=-2,從而求得實(shí)數(shù)a的值.
(2)在(1)的條件下,f(n)=|2n-1|+1,即f(n)+f(-n)≤m,即|2n-1|+|2n+1|+2≤m.求得|2n-1|+|2n+1|的最小值為2,可得m的范圍.

解答 解:(1)∵函數(shù)f(x)=|2x-a|+a,
故不等式f(x)≤6,
即 $\left\{\begin{array}{l}{6-a≥0}\\{a-6≤2x-a≤6-a}\end{array}\right.$,
求得 a-3≤x≤3.
再根據(jù)不等式的解集為{x|-2≤x≤3},
可得a-3=-2,
∴實(shí)數(shù)a=1.
(2)在(1)的條件下,f(x)=|2x-1|+1,
∴f(n)=|2n-1|+1,存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,
即f(n)+f(-n)≤m,即|2n-1|+|2n+1|+2≤m.
由于|2n-1|+|2n+1|≥|(2n-1)-(2n+1)|=2,
∴|2n-1|+|2n+1|的最小值為2,
∴m≥4,
故實(shí)數(shù)m的取值范圍是[4,+∞).

點(diǎn)評 本題主要考查分式不等式的解法,絕對值三角不等式的應(yīng)用,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓C:x2+(y-4)2=r2,直線l過點(diǎn)M(-2,0)
(Ⅰ)若圓C的半徑r=2,直線l與圓C相切,求直線l的方程;
(Ⅱ)若直線l的傾斜角α=135°,且直線l與圓C相交于A、B兩點(diǎn),弦長$|{AB}|=2\sqrt{2}$,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若曲線f(x)=ax2+$\frac{1}{2}$x+lnx在點(diǎn)(1,f(1))處的切線與y=$\frac{7}{2}$x-1平行,則a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解關(guān)于x的不等式ax2+2x-1>0(a為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出如下四個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1<1”;
④在△ABC中,“A>B”是“sinA>sinB”的充要條件.
其中正確的命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\frac{2}{x}$-ln(x-2)的零點(diǎn)所在的大致區(qū)間為( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x+1≤0,命題q:?x∈R,x2+mx+1>0恒成立.若p∧q為假命題,則實(shí)數(shù)m的取值范圍為( 。
A.m≥2B.m≤-2C.m≤-2或x≥2D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l:4x-3y-12=0與圓(x-2)2+(y-2)2=5交于A,B兩點(diǎn),且與x軸、y軸分別交于C,D兩點(diǎn),則( 。
A.2|CD|=5|AB|B.8|CD|=4|AB|C.5|CD|=2|AB|D.3|CD|=8|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=-x2+2ax+1在(1,+∞)上是減函數(shù),則a的取值范圍是(  )
A.(-∞,1]B.(-∞,-1]C.[1,+∞)D.[-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案