①②④
分析:利用函數(shù)f(x)=sin(
-2x)的一個(gè)增區(qū)間,判斷是否是[
,
],說(shuō)明①是否正確;
②直接判斷函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍,結(jié)果正確;
③對(duì)于函數(shù)f(x)=tg(2x+
),利用f(x
1)=f(x
2),推出則x
1-x
2必是π的整數(shù)倍,即可.
④函數(shù)y=2sin(2x+
)的圖象關(guān)于點(diǎn)(
,0)對(duì)稱.只需把x=
代入,函數(shù)值是否為0,判斷正誤即可.
解答:①因?yàn)楹瘮?shù)f(x)=sin(
-2x)的單調(diào)增區(qū)間為:[
+2kπ,
+2kπ],k∈Z,它的一個(gè)增區(qū)間是[
,
];正確.
②若函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;正確.
③對(duì)于函數(shù)f(x)=tg(2x+
),若f(x
1)=f(x
2),則x
1-x
2必是π的整數(shù)倍;錯(cuò)誤,是
的整數(shù)倍.
④函數(shù)y=2sin(2x+
)的圖象關(guān)于點(diǎn)(
,0)對(duì)稱.把x=
代入,函數(shù)值為0,所以是對(duì)稱中心.
故答案為:①②④
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的有關(guān)性質(zhì),利用基本函數(shù)的基本性質(zhì)解答問(wèn)題,是解好數(shù)學(xué)問(wèn)題的關(guān)鍵.