18.在平面四邊形ABCD中,已知$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,則四邊形ABCD的面積為15.

分析 由已知得|$\overrightarrow{AC}$|=$\sqrt{10}$,|$\overrightarrow{BD}$|=3$\sqrt{10}$,$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,由此能求出四邊形ABCD的面積.

解答 解:∵在平面四邊形ABCD中,
∵$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,
∴$\overrightarrow{AC}•\overrightarrow{BD}$=9-9=0,且|$\overrightarrow{AC}$|=$\sqrt{1+9}=\sqrt{10}$,|$\overrightarrow{BD}$|=$\sqrt{81+9}$=3$\sqrt{10}$,
∴$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,
∴四邊形ABCD的面積為S=$\frac{1}{2}×\sqrt{10}×3\sqrt{10}$=15.
故答案為:15.

點(diǎn)評 本題考查四邊形面積的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意平面向量性質(zhì)及運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.己知圓M (x+1)2+y2=64,定點(diǎn)N(1,0),點(diǎn)P為圓M上的動點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在線段MP上,且滿足$\overrightarrow{NP}$=2$\overrightarrow{NQ}$,$\overrightarrow{GQ}$•$\overrightarrow{NP}$=0,則點(diǎn)G的軌跡方程是(  )
A.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{14}$=1B.$\frac{{x}^{2}}{17}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{14}$+$\frac{{y}^{2}}{13}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:函數(shù)y=3-ax+1的圖象恒過定點(diǎn)(1,3);命題q:若函數(shù)y=f(x-3)為偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=3對稱,則下列命題為真命題的是( 。
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z的對應(yīng)點(diǎn)為(1,1),則z2=( 。
A.$\sqrt{2}$B.2iC.$-\sqrt{2}$D..2+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線$l:x=\frac{a^2}{c}$是橢圓$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0,c=\sqrt{{a^2}-{b^2}}})$的右準(zhǔn)線,若橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,右準(zhǔn)線方程為x=2.
(1)求橢圓Γ的方程;
(2)已知一直線AB過右焦點(diǎn)F(c,0),交橢圓Γ于A,B兩點(diǎn),P為橢圓Γ的左頂點(diǎn),PA,PB與右準(zhǔn)線交于點(diǎn)M(xM,yM),N(xN,yN),問yM•yN是否為定值,若是,求出該定值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線E:y2=2px(P>0)的準(zhǔn)線為x=-1,M,N為直線x=-2上的兩點(diǎn),M,N兩點(diǎn)的縱坐標(biāo)之積為-8,P為拋物線上一動點(diǎn),PN,PM,分別交拋物線于A,B兩點(diǎn).
(1)求拋物線E的方程;
(2))問直線AB是否過定點(diǎn),若過定點(diǎn),請求出此定點(diǎn);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上述的已知條件,可求得該女子前3天所織布的總尺數(shù)為$\frac{35}{31}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={-2,-1,0,1,2},B={x|x>-1},則A∩B=( 。
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱錐的四個面中,下列說法不正確的是( 。
A.不能都是直角三角形B.不能都是銳角三角形
C.不能都是等腰三角形D.可能都是鈍角三角形

查看答案和解析>>

同步練習(xí)冊答案