10.古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上述的已知條件,可求得該女子前3天所織布的總尺數(shù)為$\frac{35}{31}$.

分析 利用等比數(shù)列的求和公式即可得出.

解答 解:設(shè)該女五第一天織布x尺,
則$\frac{x({2}^{5}-1)}{2-1}$=5,
解得x=$\frac{5}{31}$,
∴該女子前3天所織布的總尺數(shù)=$\frac{\frac{5}{31}({2}^{3}-1)}{2-1}$=$\frac{35}{31}$.
故答案為:$\frac{35}{31}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線x-y+1=0的斜率是( 。
A.1B.-1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=Acos(x+\frac{π}{6})$,x∈R,且$f(\frac{π}{12})=\sqrt{2}$.
(Ⅰ)求A的值;
(Ⅱ)設(shè)α,β∈[0,$\frac{π}{2}$],$f(α+\frac{π}{3})$=-$\frac{24}{13}$,$f(β-\frac{π}{6})=\frac{8}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面四邊形ABCD中,已知$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,則四邊形ABCD的面積為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合A={x||x|≤2},B={x|3x-2≥1},則A∩B={x|1≤x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={1,2},B={1,2,4},C={1,4,6},則(A∩B)∪C=( 。
A.{1}B.{1,4,6}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.${({2-\sqrt{x}})^n}$的二次展開式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為256,則展開式中x4項(xiàng)的系數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x|+|x-3|.
(1)解關(guān)于x的不等式f(x)-5≥x;
(2)設(shè)m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若不等式|x+1|+|x-3|≥|m-1|恒成立,則m的取值范圍為( 。
A.[-3,5]B.[3,5]C.[-5,3]D.[-5,-3]

查看答案和解析>>

同步練習(xí)冊(cè)答案