(本題滿12分)在銳角△ABC中,a,b,c分別為角A,B,C所對的邊,且
(1)確定角C的大;
(2)若,且△ABC的面積為,求a+b的值。
(1)(2) a+b=5

試題分析:解(1)由及正弦定理得,

∵△ABC是銳角三角形,
(2)。由面積公式得
,即ab=6      ①
由余弦定理得
,即     ②
由②變形得,故a+b=5
點(diǎn)評:解決該試題的關(guān)鍵是利用正弦定理和三角形面積公式來求解運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△的內(nèi)角所對的邊分別為。
(1)若,求的值;
(2)若△的面積,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,角AB、C所對的邊分別為ab、c.若(bc)cos Aacos C,則cos A      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)在中,角所對的邊分別為,且滿足,. 
(I)求的面積;  (II)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

ABC中,所對的邊分別為a,b,c,已知a=2,b=,=,則ABC的面積為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中,若,則的面積S=        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,已知,則角A等于         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,A,B,C三個(gè)觀察哨,A在B的正南,兩地相距6km,C在B的北偏東60°,兩地相距4km.在某一時(shí)刻,A觀察哨發(fā)現(xiàn)某種信號(hào),并知道該信號(hào)的傳播速度為1km/s;4秒后B,C兩個(gè)觀察哨同時(shí)發(fā)現(xiàn)這種信號(hào).在以過A,B兩點(diǎn)的直線為y軸,以線段AB的垂直平分線為x軸的平面直角坐標(biāo)系中,試求出發(fā)了這種信號(hào)的地點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
(文)某種型號(hào)汽車的四個(gè)輪胎半徑相同,均為,該車的底盤與輪胎中心在同一水平面上. 該車的涉水安全要求是:水面不能超過它的底盤高度. 如圖所示:某處有一“坑形”地面,其中坑形成頂角為的等腰三角形,且,如果地面上有()高的積水(此時(shí)坑內(nèi)全是水,其它因素忽略不計(jì)).
(1)當(dāng)輪胎與、同時(shí)接觸時(shí),求證:此輪胎露在水面外的高度(從輪胎最上部到水面的距離)為
(2) 假定該汽車能順利通過這個(gè)坑(指汽車在過此坑時(shí),符合涉水安全要求),求的最大值.
(精確到1cm).

查看答案和解析>>

同步練習(xí)冊答案