分析 求出右焦點H的坐標,由雙曲線的定義可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|,求得2a+|AH|的值,即可求出△PAF周長的最小值.
解答 解:∵F是雙曲線$C:\frac{x^2}{4}-\frac{y^2}{5}=1$的左焦點,
∴a=2,b=$\sqrt{5}$,c=3,F(xiàn)(-3,0 ),右焦點為H(3,0),
由雙曲線的定義可得|PF|-|PH|=2a=4,
|PF|+|PA|=2a+|PH|+|PA|
≥2a+|AH|=4+$\sqrt{9+16}$=4+5=9,
∵|AF|=$\sqrt{9+16}$=5,
∴當且僅當A,P,H共線時,△PAF周長取得最小值為9+5=14.
故答案為:14.
點評 本題考查雙曲線的定義和雙曲線的標準方程,以及雙曲線的簡單性質的應用,把|PF|+|PA|化為2a+|PH|+|PA|是解題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1990 | B. | 1991 | C. | 1989 | D. | 1988 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com