【題目】給出如下四對事件:
①某人射擊1次,“射中7環(huán)”與“射中8環(huán)”;
②甲、乙兩人各射擊1次,“至少有1人射中目標(biāo)”與“甲射中,但乙未射中目標(biāo)”;
③從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,“至少一個黑球”與“都是紅球”;
④從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,“沒有黑球”與“恰有一個紅球”;
其中屬于互斥事件的是 . (把你認(rèn)為正確的命題的序號都填上)
【答案】①③④
【解析】解:某人射擊1次,“射中7環(huán)”與“射中8環(huán)”,這兩個事件不可能同時發(fā)生,故①是互斥事件;
甲、乙兩人各射擊1次,“至少有1人射中目標(biāo)”與“甲射中,但乙未射中目標(biāo)”,前者包含后者,故②不是互斥事件;
從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,“至少一個黑球”與“都是紅球”,這兩個事件不可能同時發(fā)生,故③是互斥事件;
從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,“沒有黑球”與“恰有一個紅球”,這兩個事件不可能同時發(fā)生,故④是互斥事件;
所以答案是:①③④.
【考點(diǎn)精析】本題主要考查了互斥事件與對立事件的相關(guān)知識點(diǎn),需要掌握互斥事件是指事件A與事件B在一次試驗(yàn)中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生;而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“現(xiàn)代五項”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運(yùn)動項目,包含射擊、擊劍、游泳、馬術(shù)和越野跑五項運(yùn)動.已知甲、乙、丙共三人參加“現(xiàn)代五項”.規(guī)定每一項運(yùn)動的前三名得分都分別為a,b,c(a>b>c且a,b,c∈N*),選手最終得分為各項得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名,則游泳比賽的第三名是( )
A.甲
B.乙
C.丙
D.乙和丙都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有50名學(xué)生,一次數(shù)學(xué)考試的成績ξ服從正態(tài)分布N(110,102),已知P(100≤ξ≤110)=0.36,估計該班學(xué)生數(shù)學(xué)成績在120分以上的有人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題“x∈R,x2+1≥1”的否定是( )
A.x∈R,x2+1<1
B.x∈R,x2+1≤1
C.x∈R,x2+1<1
D.x∈R,x2+1≥1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】歐拉(Leonhard Euler,國籍瑞士)是科學(xué)史上最多產(chǎn)的一位杰出的數(shù)學(xué)家,他發(fā)明的公式eix=cosx+isinx(i為虛數(shù)單位),將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,這個公式在復(fù)變函數(shù)理論中占用非常重要的地位,被譽(yù)為“數(shù)學(xué)中的天橋”,根據(jù)此公式可知,e﹣4i表示的復(fù)數(shù)在復(fù)平面中位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用三段論推理:“任何實(shí)數(shù)的絕對值大于0,因?yàn)閍是實(shí)數(shù),所以a的絕對值大于0”,你認(rèn)為這個推理( )
A.大前提錯誤
B.小前提錯誤
C.推理形式錯誤
D.是正確的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高一有400人,高二有320人,高三有280人,用簡單隨機(jī)抽樣方法抽取一個容量為n的樣本,已知每個人被抽取到的可能性大小為0.2,則n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=loga(2﹣ax)在(﹣1,1)上是x的減函數(shù),則a的取值范圍是( )
A.(0,2)
B.(1,2)
C.(1,2]
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+1)=x2﹣1,則( )
A.f(x)=x2﹣2x
B.f(x)=x2+2x
C.f(x)=x2﹣4x
D.f(x)=x2+4x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com