【題目】已知函數(shù)y=loga(2﹣ax)在(﹣1,1)上是x的減函數(shù),則a的取值范圍是( )
A.(0,2)
B.(1,2)
C.(1,2]
D.[2,+∞)
【答案】C
【解析】解:原函數(shù)是由簡(jiǎn)單函數(shù)t=2﹣ax和y=logat共同復(fù)合而成.
∵a>0,∴t=2﹣ax為定義域上減函數(shù),
而由復(fù)合函數(shù)法則和題意得到,
y=logat在定義域上為增函數(shù),∴a>1
又函數(shù)t=2﹣ax>0在(﹣1,1)上恒成立,則2﹣a≥0即可.
∴a≤2.
綜上,1<a≤2,
故選:C.
【考點(diǎn)精析】本題主要考查了復(fù)合函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí)點(diǎn),需要掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)滿足對(duì)任意x∈R都有f(x+2)=f(﹣x)成立,且函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,f(1)=4,則f(2016)+f(2017)+f(2018)=( )
A.12
B.8
C.4
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如下四對(duì)事件:
①某人射擊1次,“射中7環(huán)”與“射中8環(huán)”;
②甲、乙兩人各射擊1次,“至少有1人射中目標(biāo)”與“甲射中,但乙未射中目標(biāo)”;
③從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,“至少一個(gè)黑球”與“都是紅球”;
④從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,“沒有黑球”與“恰有一個(gè)紅球”;
其中屬于互斥事件的是 . (把你認(rèn)為正確的命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,x2﹣2xsinθ+1≥0;命題q:α,β∈R,sin(α+β)≤sinα+sinβ,則下列命題中的真命題為( )
A.(¬p)∧q
B.p∧(¬q)
C.(¬p)∨q
D.¬(p∨q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n是兩條直線,α,β是兩個(gè)平面,給出四個(gè)命題
①mα,nβ,m∥β,n∥αα∥β
②m⊥α,n⊥αm∥n
③m∥α,m∥nn∥α
④α⊥β,mαm⊥β
其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】l1 , l2 , l3是空間三條不同的直線,則下列命題正確的是( )
A.l1⊥l2 , l2⊥l3l1∥l3
B.l1⊥l2 , l2∥l3l1⊥l3
C.l1∥l2∥l3l1 , l2 , l3共面
D.l1 , l2 , l3共點(diǎn)l1 , l2 , l3共面
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com