.如圖所示,已知正四棱錐S—ABCD中,底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為a.
(1)求它的外接球的體積;
(2)求它的內(nèi)切球的表面積.
(1)V球=R3=a3(2)V棱錐=S底h=a2×a=
(1)設(shè)外接球的半徑為R,球心為O,則OA=OC=OS,所以O(shè)為△SAC的外心,
即△SAC的外接圓半徑就是球的半徑.
∵AB=BC=a,∴AC=a.
∵SA=SC=AC=a,∴△SAC為正三角形.
由正弦定理得2R=,
因此,R=a,V球=R3=a3.
(2)設(shè)內(nèi)切球半徑為r,作SE⊥底面ABCD于E,
作SF⊥BC于F,連接EF,
則有SF=
=.
S△SBC=BC·SF=a×a=a2.
S棱錐全=4S△SBC+S底=(+1)a2.
又SE===,
∴V棱錐=S底h=a2×a=.
∴r=,
S球=4r2=a2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)證明EF為BD1與CC1的公垂線;
(2)求點(diǎn)D1到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,已知正四棱錐S—ABCD側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為,E是SA的中點(diǎn),則異面直線BE與SC所成角的大小為 ( )
A.90° B.60°
C.45° D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高二上期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
如圖所示,已知正四棱錐側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為,是的中點(diǎn),則異面直線與所成角的大小為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三一輪復(fù)習(xí)質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:選擇題
如圖所示,已知正四棱錐S—ABCD側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為,E是SA的中點(diǎn),則異面直線BE與SC所成角的大小為 ( )
A.90° B.60° C.45° D.30°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com