6.函數(shù)f(x)=$\frac{a{x}^{3}}{3}$+$\frac{a{x}^{2}}{2}$-2ax+2a+1的圖象經(jīng)過四個(gè)象限,則實(shí)數(shù)a的取值范圍是( 。
A.(-$\frac{6}{5}$,$\frac{3}{16}$)B.(-$\frac{8}{5}$,-$\frac{3}{16}$)C.(-$\frac{8}{5}$,-$\frac{1}{16}$)D.(-$\frac{6}{5}$,-$\frac{3}{16}$)

分析 先求導(dǎo)函數(shù),利用導(dǎo)數(shù)求函數(shù)的最值,利用最值異號(hào)可以求解.

解答 解:∵f′(x)=ax2+ax-2a=a(x-1)(x+2).
若a<0,
則當(dāng)x<-2或x>1時(shí),f′(x)<0,
當(dāng)-2<x<1時(shí),f′(x)>0,
從而有f(-2)<0,且f(1)>0,
即:$\left\{\begin{array}{l}{-8a+24a+3<0}\\{\frac{1}{3}a+\frac{1}{2}a+1>0}\end{array}\right.$,
∴-$\frac{6}{5}$<a<-$\frac{3}{16}$,
若a>0,
則當(dāng)x<-2或x>1時(shí),f′(x)>0,
當(dāng)-2<x<1時(shí),f′(x)<0,
從而有f(-2)>0,且f(1)<0,無解,
綜合以上:-$\frac{6}{5}$<a<-$\frac{3}{16}$.
故選D.

點(diǎn)評(píng) 本題主要考查三次函數(shù)的圖象,利用導(dǎo)數(shù)求函數(shù)的最值可以解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.五種不同商品在貨架上排成一排,其中A,B兩種必須連排,而C,D兩種不能連排,則不同的排法共有( 。
A.48種B.24種C.20種D.12種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若關(guān)于x的不等式x2+(a-1)x+1<0有解,則實(shí)數(shù)a的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的表面積為$55+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin|ωx|,若y=f(x)與y=m(m為常數(shù))圖象的公共點(diǎn)中,相鄰兩個(gè)公共點(diǎn)的距離的最大值為2π,則ω的值為(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.等比數(shù)列{an}滿足an>0,n=1,2,…,且a2•an-1=2(n≥2),則當(dāng)n≥2時(shí),log2a1+log2a2+log2a3+log2a4+…+log2an-1+log2an=$\left\{\begin{array}{l}{\frac{n-1}{2}+lo{g}_{2}{a}_{\frac{n}{2}},n為奇數(shù)}\\{\frac{n}{2},n為偶數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列四個(gè)說法:
①a∥α,b?α,則a∥b;
②a∩α=P,b?α,則a與b不平行;
③a?α,則a∥α;
④a∥α,b∥α,則a∥b.
其中錯(cuò)誤的說法的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:$\frac{x^2}{m}-\frac{y^2}{n}$=1,曲線f(x)=ex在點(diǎn)(0,2)處的切線方程為2mx-ny+2=0,則該雙曲線的漸近線方程為( 。
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

同步練習(xí)冊(cè)答案