如圖所示,AB是⊙O的直徑,G為AB延長線上的一點,GCD是⊙O的割線,過點G作AB的垂線,交AC的延長線于點E,交AD的延長線于點F,過G作⊙O的切線,切
點為H.求證:(1)C,D,F(xiàn),E四點共圓;
(2)GH2=GE·GF.
(1)連接BC.∵AB是⊙O的直徑,
∴∠ACB=90°.
∵AG⊥FG,∴∠AGE=90°.
又∠EAG=∠BAC,
∴∠ABC=∠AEG.
又∠FDC=∠ABC,
∴∠FDC=∠AEG.
∴∠FDC+∠CEF=180°.
∴C,D,F(xiàn),E四點共圓. 7分
(2)∵GH為⊙O的切線,GCD為割線,
∴GH2=GC·GD.
由C,D,F(xiàn),E四點共圓,
得∠GCE=∠AFE,∠GEC=∠GDF.
∴△GCE∽△GFD.∴=,
即GC·GD=GE·GF.
∴CH2=GE·GF.
(1)連接BC.∵AB是⊙O的直徑,
∴∠ACB=90°.
∵AG⊥FG,∴∠AGE=90°.
又∠EAG=∠BAC,
∴∠ABC=∠AEG.
又∠FDC=∠ABC,
∴∠FDC=∠AEG.
∴∠FDC+∠CEF=180°.
∴C,D,F(xiàn),E四點共圓. 7分
(2)∵GH為⊙O的切線,GCD為割線,
∴GH2=GC·GD.
由C,D,F(xiàn),E四點共圓,
得∠GCE=∠AFE,∠GEC=∠GDF.
∴△GCE∽△GFD.∴=,
即GC·GD=GE·GF.
∴CH2=GE·GF. 14分
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
AB |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
24 |
5 |
24 |
5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
24 |
5 |
24 |
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com