【題目】已知橢圓W: (a>b>0)的上下頂點分別為A,B,且點B(0,﹣1).F1 , F2分別為橢圓W的左、右焦點,且∠F1BF2=120°.
(Ⅰ)求橢圓W的標準方程;
(Ⅱ)點M是橢圓上異于A,B的任意一點,過點M作MN⊥y軸于N,E為線段MN的中點.直線AE與直線y=﹣1交于點C,G為線段BC的中點,O為坐標原點.求∠OEG的大小.
【答案】解:(Ⅰ)依題意,得b=1.又∠F1BF2=120°,
在Rt△BF1O中,∠F1BO=60°,則a=2.
∴橢圓W的標準方程為 .
(Ⅱ)設M(x0,y0),x0≠0,則N(0,y0),E .
由點M在橢圓W上,則 .即 .
又A(0,1),則直線AE的方程為 .
令y=﹣1,得C .
又B(0,﹣1),G為線段BC的中點,則G .
∴ , .
∵ =
= =1﹣y0﹣1+y0=0,
∴ .則∠OEG=90°,
∠OEG為90°.
【解析】(Ⅰ)由b=1,由∠F1BO=60°,則a=2.即可求得橢圓W的標準方程;(Ⅱ)由題意設N和E點坐標,設直線AE的方程,當y=﹣1,即可求得C點坐標,求得G點坐標,則 , .根據(jù)向量數(shù)量積的坐標運算,即可求得 =0,則 ,則∠OEG=90°.
科目:高中數(shù)學 來源: 題型:
【題目】在一次馬拉松比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示,若將運動員按成績由好到差編為號,再用系統(tǒng)抽樣方法從中抽取7人,則其中成績在區(qū)間上的運動員人數(shù)是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列幾個命題:
①函數(shù)是偶函數(shù),但不是奇函數(shù);
②方程的有一個正實根,一個負實根,;
③是定義在上的奇函數(shù),當時,,則 時,
④函數(shù)的值域是.
其中正確命題的序號是_____(把所有正確命題的序號都寫上).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向左平移 個單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關于直線x=ω對稱且在區(qū)間(﹣ω,ω)內單調遞增,則ω的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四邊形ABEF是正方形,且平面ABEF⊥平面ABCD,M為AF的中點, (I)求證:AC⊥BM;
(II)求異面直線CE與BM所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,內角A,B,C的對邊分別為a,b,c,且(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2 ,則a2+b2的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 過F2作一條直線(不與x軸垂直)與橢圓交于A,B兩點,如果△ABF1恰好為等腰直角三角形,該直線的斜率為( )
A.±1
B.±2
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com