分析 (1)根據(jù)已知條件,得出b=c,由圓的直徑得出2a.進(jìn)而得基本參數(shù)a,b,c.
(2)直線與圓位置關(guān)系,構(gòu)造直角三角形用勾股關(guān)系求得|MN|,直線與橢圓采用設(shè)而不求法,根據(jù)韋達(dá)定理求得弦長(zhǎng)|AB|,都轉(zhuǎn)化為關(guān)于斜率k的函數(shù)求取值范圍.
解答 解:(Ⅰ)因?yàn)闄E圓C長(zhǎng)軸長(zhǎng)等于圓R:x2+(y-2)2=4的直徑,
所以2a=4,a=2;又2b=2c,
所以$b=c=\sqrt{2}$,
所以橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;…(3分)
(Ⅱ)當(dāng)直線l的斜率不存在時(shí),|AB|=2$\sqrt{2}$,|MN|=4,|AB|•|MN|=8$\sqrt{2}$;…(4分)
當(dāng)直線l的斜率存在時(shí),設(shè)l的方程為y=kx+1,與$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$聯(lián)立,
消去y,得(1+2k2)x2+4kx-2=0;
由△>0,可得k∈R…(5分)
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=$-\frac{4k}{1+2{k}^{2}}$,x1x2=$-\frac{2}{1+2{k}^{2}}$,
|AB|=$\sqrt{1+{k}^{2}}$•|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{(-\frac{4k}{1+2{k}^{2}})^{2}+\frac{8}{1+2{k}^{2}}}$
=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{32{k}^{2}+8}}{1+2{k}^{2}}$,…(7分)
|MN|=2$\sqrt{4-(\frac{1}{\sqrt{1+{k}^{2}}})^{2}}$=2$\sqrt{\frac{4{k}^{2}+3}{1+{k}^{2}}}$,…(9分)
所以|AB|•|MN|=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{32{k}^{2}+8}}{1+2{k}^{2}}$•2$\sqrt{\frac{4{k}^{2}+3}{1+{k}^{2}}}$
=4$\sqrt{2}$•$\frac{\sqrt{4{k}^{2}+1}•\sqrt{4{k}^{2}+3}}{1+2{k}^{2}}$
=$4\sqrt{2}\sqrt{4-\frac{1}{{{{(1+2{k^2})}^2}}}}∈[4\sqrt{6},8\sqrt{2})$
綜上,|AB|•|MN|的取值范圍是[4$\sqrt{6}$,8$\sqrt{2}$].…12
點(diǎn)評(píng) 考查了求橢圓標(biāo)準(zhǔn)方程,直線與圓、橢圓的位置關(guān)系.考查了設(shè)而不求法,函數(shù)思想.化簡(jiǎn)及求范圍有一定難度,故屬于難題;易忽略斜率不存在這類,故屬于易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a-1 | B. | 2-a-1 | C. | 1-2-a | D. | 1-2a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45 | B. | 51 | C. | 53 | D. | 61 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要 | B. | 必要非充分 | ||
C. | 充分必要 | D. | 既非充分又非必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 0 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com