6.已知0<α<π,則tanα>1是sinα>cosα的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 根據(jù)同角的三角函數(shù)的關(guān)系和充分必要條件的定義即可判斷.

解答 解:∵0<α<π,tanα>1,
∴$\frac{sinα}{cosα}$>1,sinα>0,
∴sinα>cosα,
當(dāng)$\frac{π}{2}$<α<π時,cosα<0,sinα>0,
∴sinα>cosα,
∴tanα<0,
故tanα>1是sinα>cosα的充分不必要條件,
故選:B

點評 本題考查了三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知某幾何體的三視圖如圖所示,根據(jù)圖中的數(shù)據(jù)可得此幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{17}{6}$C.$\frac{8}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{-x+\frac{1}{x},x<0}\end{array}\right.$,若關(guān)于x的方程f(x2-4x)=a有六個不同的實根,則實數(shù)a的取值范圍是(  )
A.(2,+∞)B.(1,$\frac{15}{4}$)C.(1,2)D.(2,$\frac{15}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.關(guān)于m的不等式組$\left\{\begin{array}{l}{\frac{2(m-1)}{3}-\frac{5m+1}{2}≥-3}\\{3m-2(m-1)≥a}\end{array}\right.$ 的非正整數(shù)解是-3,-2,-1,0,則a的最大值為( 。
A.-3B.0C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,下列關(guān)系一定成立的是( 。
A.a>bsin AB.a=bsinAC.a≤bsinAD.a≥bsin A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,PA=CD=AD=2AB=2,PA⊥底面ABCD,E是PC的中點.
(1)求證:BE∥面PAD;
(2)求直線BE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某校對全校900名男女學(xué)生進行健康調(diào)查,選用分層抽樣法抽取一個容量為100的樣本.已知女生抽了25人,則該校的男生數(shù)應(yīng)是675人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)z是復(fù)數(shù),下列命題中的假命題是( 。
A.若z2≥0,則z是實數(shù)B.若z是虛數(shù),則z•$\overline{z}$≥0
C.若z是虛數(shù),則z2≥0D.若z是純虛數(shù),則z2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點P(x,y)在不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{2x-y-2≤0}\\{2x-1≥0}\end{array}\right.$表示的平面區(qū)域上運動,則z=$\frac{x+y+2}{x+1}$的取值范圍是( 。
A.[1,$\frac{5}{3}$]B.[0,1]C.[1,$\frac{8}{3}$]D.[0,$\frac{5}{3}$]

查看答案和解析>>

同步練習(xí)冊答案