3.已知數(shù)列{an}為等比數(shù)列,則下列結(jié)論正確的是( 。
A.a1+a3≥2a2B.若a3>a1,則a4>a2C.若a1=a3,則a1=a2D.a12+a32≥2a22

分析 根據(jù)等比數(shù)列的通項公式、不等式的性質(zhì)進(jìn)行解答.

解答 解:設(shè){an}的公比為q.
A、因為a1+a3=a1(1+q2),a3=a1q2,所以當(dāng)a1<0時,該不等式不成立,故本選項錯誤;
B、若a3>a1,即a1q2>a1.a(chǎn)4=a1q2•q,a2=a1q,由于無法判定q的正負(fù),所以無法比較a1q2•q與a1q的大小,故本選項錯誤;
C、若a3=a1,即a1q2=a1,則q=±1.當(dāng)q=-1時,等式a1=a2不成立,故本選項錯誤;
D、因為a12+a32≥2a1•a3=2a22,故本選項正確.
故選:D.

點評 本題考查等比數(shù)列的通項公式及應(yīng)用,考查計算能力,屬于基礎(chǔ)題和易錯題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點. 將△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求證:AD⊥BM;
(Ⅱ)若$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{DB}$時,求三棱錐D-AEM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,若a=$\sqrt{3}$,b=$\sqrt{2}$,b=45°,則∠A的為( 。
A.30°或120°B.60°或120°C.30°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(a+1)x+lnx,其中a>0.
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若a>1,證明:對任意x1,x2∈(1,+∞)(x1≠x2),總有$\frac{{|f({x_1})-f({x_2})|}}{{|a{x_1}^2-a{x_2}^2|}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知冪函數(shù)f(x)=xn的圖象過點(8,$\frac{1}{4}$),且f(a+1)<f(2),則a的范圍是( 。
A.-3<a<1B.a<-3或a>1C.a<1D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖的程序框圖,輸出的S的值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖所示的數(shù)陣中,用A(m,n)表示第m行的第n個數(shù),依此規(guī)律,則A(15,2)=$\frac{17}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知矩形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(1)求證AD⊥BM.;
(2)若E是線段DB的中點,求二面角E-AM-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|$\frac{1}{3}≤(\frac{1}{3})^{x-1}≤9$},集合B={x|log2x<3},集合C={x|(x-a)[x-(a+1)≤0},U=R.
(1)求集合A∩B,(∁UB)∪A;
(2)若A∪C=A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案